Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) (characterized)
to candidate BPHYT_RS19500 BPHYT_RS19500 methylmalonate-semialdehyde dehydrogenase
Query= reanno::pseudo6_N2E2:Pf6N2E2_515 (500 letters) >FitnessBrowser__BFirm:BPHYT_RS19500 Length = 512 Score = 758 bits (1958), Expect = 0.0 Identities = 362/499 (72%), Positives = 424/499 (84%) Query: 2 SDAPVVGHYLNGHVQDHDSTRFSNVFNPATGAVQARVALAEPGTVDAAVASALAAFPAWS 61 + A + H++NG + S RF +VFNPA G+V ARV LA VDAAVA+A AAFPAWS Sbjct: 14 TSARALTHFINGKTFEGTSGRFGDVFNPAQGSVSARVPLASVAEVDAAVAAAKAAFPAWS 73 Query: 62 EQSSLRRSRVMFKFKELLDRHHDELAQIISREHGKVLSDAHGEVTRGIEIVEYACGAPNL 121 E + ++R+RV+FKFKELLDRHHDELA++I+REHGKV SDA GEV RGIEIVE+ACG PNL Sbjct: 74 ETAPIKRARVLFKFKELLDRHHDELAELITREHGKVFSDAKGEVMRGIEIVEFACGIPNL 133 Query: 122 LKTDFSDNIGGGIDNWNLRQPLGVCAGVTPFNFPVMVPLWMIPLALVAGNCFILKPSERD 181 LKTDF+D IGGGIDNWNLRQPLGV AG+TPFNFP+MVP WM P+A+ GN F+LKPSERD Sbjct: 134 LKTDFTDQIGGGIDNWNLRQPLGVVAGITPFNFPMMVPCWMFPVAIACGNTFVLKPSERD 193 Query: 182 PSASLLMARLLTEAGLPDGVFNVVQGDKVAVDALLQHPDIEAISFVGSTPIAEYIHQQGT 241 PS S +A LL EAGLPDGVFNVV GDKVAVDALL HP++ A+SFVGSTPIAEYI+ +GT Sbjct: 194 PSCSNRLAELLKEAGLPDGVFNVVHGDKVAVDALLVHPEVSALSFVGSTPIAEYIYTEGT 253 Query: 242 AHGKRVQALGGAKNHMIVMPDADLDQAADALIGAAYGSAGERCMAISIAVAVGDVGDELI 301 HGKRVQALGGAKNH++VMPDADLDQA DALIGAAYGSAGERCMAIS+AVAVG + DELI Sbjct: 254 KHGKRVQALGGAKNHLVVMPDADLDQAVDALIGAAYGSAGERCMAISVAVAVGHIADELI 313 Query: 302 AKLLPRIDQLKIGNGQQPGTDMGPLVTAEHKAKVEGFIDAGVAEGARLIVDGRSFKVPGA 361 +L PR+ LKI NG + +MGPLVTA H+ KV G+ID+GV GA+L+VDGR +V G Sbjct: 314 ERLTPRVKSLKILNGMESDAEMGPLVTAVHREKVVGYIDSGVEAGAKLVVDGRGHQVSGH 373 Query: 362 EQGFFVGATLFDQVTAEMSIYQQEIFGPVLGIVRVPDFATAVALINAHEFGNGVSCFTRD 421 E+GFF+G TLFD V+ +M IY++EIFGPVL +VRVPDFA+AV LINA+EF NGVS FT D Sbjct: 374 EKGFFLGGTLFDNVSTDMKIYREEIFGPVLCVVRVPDFASAVELINANEFANGVSLFTSD 433 Query: 422 GGIARAFARSIKVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEGLRFYSRYKSVM 481 GG+ARAF+R I++GMVGINVPIPVPMAWHSFGGWK+SLFGDHHAYGEEG+RFY+RYKS+M Sbjct: 434 GGVARAFSRQIQIGMVGINVPIPVPMAWHSFGGWKKSLFGDHHAYGEEGVRFYTRYKSIM 493 Query: 482 QRWPDSIAKGPEFSMPTAQ 500 QRWPDSIAKG EF+MP A+ Sbjct: 494 QRWPDSIAKGAEFTMPVAK 512 Lambda K H 0.321 0.137 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 821 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 512 Length adjustment: 34 Effective length of query: 466 Effective length of database: 478 Effective search space: 222748 Effective search space used: 222748 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory