Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate BPHYT_RS28030 BPHYT_RS28030 methylmalonate-semialdehyde dehydrogenase
Query= BRENDA::Q02252 (535 letters) >FitnessBrowser__BFirm:BPHYT_RS28030 Length = 503 Score = 603 bits (1556), Expect = e-177 Identities = 282/489 (57%), Positives = 371/489 (75%) Query: 32 SFSSSVPTVKLFIGGKFVESKSDKWIDIHNPATNEVIGRVPQATKAEMDAAIASCKRAFP 91 S +++V TVKL I G+FVESK+ +W DI NPAT EV+ RVP AT E++ AI S AF Sbjct: 2 SANAAVATVKLLINGEFVESKTTEWRDIVNPATQEVLARVPFATADEVNEAIRSAHAAFK 61 Query: 92 AWADTSVLSRQQVLLRYQQLIKENLKEIAKLITLEQGKTLADAEGDVFRGLQVVEHACSV 151 W DT + +R +++L+YQ LI+E+ IA+ ++ EQGKT+ DAEGD+FRGL+VVEHACS+ Sbjct: 62 TWKDTPIGARMRIMLKYQALIREHSPRIARTLSAEQGKTIPDAEGDIFRGLEVVEHACSI 121 Query: 152 TSLMMGETMPSITKDMDLYSYRLPLGVCAGIAPFNFPAMIPLWMFPMAMVCGNTFLMKPS 211 +L GE ++ +D Y+ R P+GVCAGI PFNFPAMIPLWMFPMA+VCGNTF++KPS Sbjct: 122 GTLQQGEFAENVAGGVDTYTLRQPIGVCAGITPFNFPAMIPLWMFPMAIVCGNTFVLKPS 181 Query: 212 ERVPGATMLLAKLLQDSGAPDGTLNIIHGQHEAVNFICDHPDIKAISFVGSNKAGEYIFE 271 E+ P +TM L +L ++G P G LN++HG E V+ +C H +KA+SFVGS G +++ Sbjct: 182 EQDPLSTMQLVELALEAGVPKGVLNVVHGGKEVVDALCTHELVKAVSFVGSTAVGTHVYR 241 Query: 272 RGSRHGKRVQANMGAKNHGVVMPDANKENTLNQLVGAAFGAAGQRCMALSTAVLVGEAKK 331 GS HGKRVQ+ MGAKNH VV+PDAN+E TLN L GA FGAAGQRCMA S VLVG A++ Sbjct: 242 LGSEHGKRVQSMMGAKNHAVVLPDANREQTLNALAGAGFGAAGQRCMATSVVVLVGAAQQ 301 Query: 332 WLPELVEHAKNLRVNAGDQPGADLGPLITPQAKERVCNLIDSGTKEGASILLDGRKIKVK 391 WLP+LV A+ L+VNAG++P D+GP+++ AK+R+ LI++G KEGA++ LDGR IKV Sbjct: 302 WLPDLVAKARTLKVNAGNEPNTDIGPVVSRAAKQRILGLIEAGVKEGATLALDGRDIKVP 361 Query: 392 GYENGNFVGPTIISNVKPNMTCYKEEIFGPVLVVLETETLDEAIQIVNNNPYGNGTAIFT 451 GYE GNF+GPT+ S+V M Y++EIFGPVLVVL TLD+AI +VN NP+GNG +FT Sbjct: 362 GYEQGNFIGPTVFSDVTTEMEIYRQEIFGPVLVVLNAATLDDAIALVNRNPFGNGVGLFT 421 Query: 452 TNGATARKYAHLVDVGQVGVNVPIPVPLPMFSFTGSRSSFRGDTNFYGKQGIQFYTQLKT 511 +GA ARK+ +D+GQVG+N+PIPVP+P FSFTGSR S GD YGKQ +QFYTQ KT Sbjct: 422 QSGAAARKFQSEIDIGQVGINIPIPVPVPSFSFTGSRGSKLGDLGPYGKQVVQFYTQTKT 481 Query: 512 ITSQWKEED 520 +T++W ++D Sbjct: 482 VTARWFDDD 490 Lambda K H 0.318 0.133 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 667 Number of extensions: 26 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 503 Length adjustment: 35 Effective length of query: 500 Effective length of database: 468 Effective search space: 234000 Effective search space used: 234000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory