Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) (characterized)
to candidate BPHYT_RS28825 BPHYT_RS28825 methylmalonate-semialdehyde dehydrogenase
Query= reanno::pseudo5_N2C3_1:AO356_23175 (500 letters) >FitnessBrowser__BFirm:BPHYT_RS28825 Length = 507 Score = 756 bits (1953), Expect = 0.0 Identities = 366/494 (74%), Positives = 419/494 (84%), Gaps = 1/494 (0%) Query: 7 VGHYIDGRIQASDNARLSNVFNPATGAVQARVALAEPSTVDAAVASALAAFPAWSEQSSL 66 +GHYI G A + R +VFNPATG V VALA VDAAV +A AAFPAWSE + L Sbjct: 15 LGHYIGGAPAAPTSGRFKDVFNPATGKVTGSVALASVEEVDAAVQAARAAFPAWSETAPL 74 Query: 67 RRSRVMFKFKELLDRHHDELAQIISREHGKVLSDAHGEVTRGIEIVEYACGAPNLLKTDF 126 +R+R++F+FKELL++HHDELA +I+REHGKV +DA GEV RGIE+VE+ACG PNLLKTDF Sbjct: 75 KRARILFRFKELLNQHHDELAMLITREHGKVFTDAQGEVVRGIEVVEFACGIPNLLKTDF 134 Query: 127 SDNIGGGIDNWNLRQPLGVCAGVTPFNFPVMVPLWMIPLALVAGNCFILKPSERDPSASL 186 +D IGGGIDNWNLRQ LGV AG+TPFNFPVMVP+WM P+AL GN F+LKPSERDPSASL Sbjct: 135 TDQIGGGIDNWNLRQALGVVAGITPFNFPVMVPMWMFPVALACGNTFVLKPSERDPSASL 194 Query: 187 LMARLLTEAGLPDGVFNVVQGDKVAVDALLQHPDIEAISFVGSTPIAEYIHQQGTAQGKR 246 +A LL EAGLPDGVFNVV GDKVAVDAL+ HPD+ A+SFVGSTPIAEYIH + + +GKR Sbjct: 195 RLAELLKEAGLPDGVFNVVNGDKVAVDALIDHPDVAALSFVGSTPIAEYIHTEASKRGKR 254 Query: 247 VQALGGAKNHMIVMPDADLDQAADALIGAAYGSAGERCMAISIAVAVGDVGDELIAKLLP 306 VQALGGAKNH++VMPDADLDQA DALIGAAYGSAGERCMAIS+AVAVG+V D+LI KL+P Sbjct: 255 VQALGGAKNHLVVMPDADLDQAVDALIGAAYGSAGERCMAISVAVAVGNVADKLIEKLVP 314 Query: 307 RIDQLKIGNGQQPGTDMGPLVTAEHKAKVEGFIDAGVAEGARLIVDGRGFKVPGAEQGFF 366 R+ L I NG+ +MGPLVTAEHKAKV G+I +G AEGA+LIVDGR V E+GFF Sbjct: 315 RVKSLVIKNGEHLDAEMGPLVTAEHKAKVTGYIASGEAEGAKLIVDGRAHPVTN-EEGFF 373 Query: 367 VGATLFDQVTAEMSIYQQEIFGPVLGIVRVPDFATAVALINAHEFGNGVSCFTRDGGIAR 426 VG TLFD V EM IY++EIFGPVL +VRVPDFA+AV LINAHEFGNGVS FT DGG+AR Sbjct: 374 VGGTLFDHVGTEMKIYKEEIFGPVLAVVRVPDFASAVDLINAHEFGNGVSLFTSDGGVAR 433 Query: 427 AFARSIKVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEGLRFYSRYKSVMQRWPD 486 AF R I+VGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEG+RFY+RYKS+MQRWPD Sbjct: 434 AFGRQIQVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEGVRFYTRYKSIMQRWPD 493 Query: 487 SIAKGPEFSMPTAQ 500 SIAKG EF+MP A+ Sbjct: 494 SIAKGAEFTMPVAK 507 Lambda K H 0.320 0.137 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 816 Number of extensions: 27 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 507 Length adjustment: 34 Effective length of query: 466 Effective length of database: 473 Effective search space: 220418 Effective search space used: 220418 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory