Align Propionyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.3) (characterized)
to candidate BPHYT_RS25975 BPHYT_RS25975 urea carboxylase
Query= reanno::PS:Dsui_0516 (663 letters) >FitnessBrowser__BFirm:BPHYT_RS25975 Length = 1203 Score = 390 bits (1001), Expect = e-112 Identities = 214/445 (48%), Positives = 289/445 (64%), Gaps = 5/445 (1%) Query: 2 FKKILIANRGEIACRVIKTARKMGIKTVAVYSEADKDALFVEMADEAVCIGPAASKESYL 61 F+K+LIANRGEIACRVI+T +++GI +VAVYSEAD+ A+ V +ADEAVCIGPA + +SYL Sbjct: 3 FRKVLIANRGEIACRVIRTLKRLGIASVAVYSEADRHAMHVMLADEAVCIGPALAAQSYL 62 Query: 62 VADKIIAACKQTGAEAVHPGYGFLSENAEFSRRLEEEGIKFIGPKHYSIAKMGDKIESKK 121 + I+ A + GA+AVHPGYGFLSENA F++ ++ GI+FIGP + + G K +++ Sbjct: 63 NSAAILDAARACGADAVHPGYGFLSENAAFAQACDDAGIRFIGPTPQHMREFGLKHTARE 122 Query: 122 LAIEAKVNTIPGYNDAIDGPDAAVEIAKKIGYPVMIKASAGGGGKGLRVAYNDAEAHEGF 181 LA V +PG + AA+ A+ IGYPVM+K++AGGGG G+ + + A+ F Sbjct: 123 LAQANDVALLPG-TGLLPDVSAALREAESIGYPVMLKSTAGGGGIGMSLCRDAAQLEGVF 181 Query: 182 SSCVNEARNSFGDDRVFIEKYVLEPRHIEIQVLGDSHGNYVYLNERDCSIQRRHQKVIEE 241 +S +F + V++EK+V RHIE+QV GD G + L ERDCS+QRR+QKVIEE Sbjct: 182 ASVARLGEANFANAGVYVEKFVENARHIEVQVFGDGKGGVISLGERDCSVQRRNQKVIEE 241 Query: 242 APSPFVDPEMRKAMGEQAVALARAVNYESAGTVEFVVSGATKEFYFLEMNTRLQVEHPVT 301 P+P + R A+ AV LA+AV Y+SAGTVEFV T+ FYFLE+NTRLQVEH VT Sbjct: 242 TPAPGLTHAERSALHASAVRLAQAVKYKSAGTVEFVFDADTRRFYFLEVNTRLQVEHCVT 301 Query: 302 ELITGLDLVEQMIRVAYGEKLPLTQADVQINGWAMECRINAEDPFRGFLPSTGRLVKFQP 361 E ITG+DLVE MIR A GE PL G +++ R+ AEDP + F PS G L Sbjct: 302 EEITGIDLVEWMIREAEGELAPLDTLATVPQGASIQVRLYAEDPHKQFQPSAGVLTHVAF 361 Query: 362 PAEVDGQVRVDTGVYDGGEISMYYDSMIAKLIVHGASREQAIARMRDALNGFVIRGISSN 421 A+ RVDT V G E+S +YD ++AKLIV G +RE +A +R AL + GI +N Sbjct: 362 AAD----ARVDTWVDSGTEVSAFYDPLLAKLIVKGETREAGLAALRAALEQTQLYGIETN 417 Query: 422 IPFQAALMQHARFQSGIFDTGFIAK 446 + + A+ A F G T F+ + Sbjct: 418 LDYLRAIAGSATFARGEQTTAFLGR 442 Score = 31.2 bits (69), Expect = 3e-04 Identities = 15/57 (26%), Positives = 34/57 (59%) Query: 597 LLSPMPGLLREVSVAVGQEVKAGEKLAVIEAMKMENILKAEQDCKVKKISVTAGSSL 653 +++ + G + ++ V G+ V G+ +A++E+MKME + A D ++ I G+++ Sbjct: 1123 IVADVSGSVWKLLVKEGERVGDGQVVAIVESMKMEISVTASGDGVIETIDCAEGAAV 1179 Lambda K H 0.319 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1746 Number of extensions: 82 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 663 Length of database: 1203 Length adjustment: 43 Effective length of query: 620 Effective length of database: 1160 Effective search space: 719200 Effective search space used: 719200 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory