Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate BPHYT_RS23265 BPHYT_RS23265 methylcrotonoyl-CoA carboxylase
Query= reanno::SB2B:6937191 (535 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS23265 BPHYT_RS23265 methylcrotonoyl-CoA carboxylase Length = 535 Score = 822 bits (2124), Expect = 0.0 Identities = 392/535 (73%), Positives = 455/535 (85%) Query: 1 MTQLTSRVNPRSDEFKQKHDAMAALVADLKDKLAHIEQGGGLVAMERHLSRGKLAPRARV 60 M + S++NPRSD+F+ A+ ALVADL+ K+ + GGG A ++H RGKL PR R+ Sbjct: 1 MPIIESKLNPRSDDFRANAAALEALVADLRAKVEKLALGGGQAARDKHTGRGKLLPRERI 60 Query: 61 EKLLDPGSPFLELSQFAAFEVYDEDVPAAGIIAGIGRVSGVECMIIANDATVKGGTYYPI 120 EKLLDPG+PFLE SQ AA+ +Y++D P AG+I GIGR++G EC+I+ NDATVKGGTYYPI Sbjct: 61 EKLLDPGTPFLEFSQLAAYGMYNDDAPGAGVITGIGRIAGQECVIVCNDATVKGGTYYPI 120 Query: 121 TVKKHLRAQAIAERCHLPCIYLVDSGGANLPRQDEVFPDRDHFGRIFFNQARMSAKGIPQ 180 TVKKH+RAQ IA HLPC+YLVDSGGANLP QD+VFPDRDHFGRIFFNQA +SA GIPQ Sbjct: 121 TVKKHVRAQEIAAENHLPCVYLVDSGGANLPNQDDVFPDRDHFGRIFFNQANLSAAGIPQ 180 Query: 181 IAVVMGLCTAGGAYVPAMADESIIVREQGTIFLAGPPLVKAATGEEVSAEELGGGDVHTK 240 IAVVMG CTAGGAYVPAM+DESIIV+ QGTIFL GPPLVKAATGE VSAE+LGGGDVHT+ Sbjct: 181 IAVVMGSCTAGGAYVPAMSDESIIVKNQGTIFLGGPPLVKAATGEVVSAEDLGGGDVHTR 240 Query: 241 ISGVADHLAQNDEHALELARKAVSRLNHQKQVELQLSKVKPPKYDINELYGIVGTDLKKP 300 +SGV DHLAQND HAL +AR V LN KQV L L + KPP+YD+ +YG++ D +KP Sbjct: 241 LSGVVDHLAQNDAHALGIARSIVGNLNRSKQVPLALQEPKPPRYDVKSMYGVIPVDTRKP 300 Query: 301 FDVKEVIARIVDDSDFDEFKANYGTTLVCGFARIHGYPVGIVANNGILFSESAQKGAHFI 360 FD++EVIARIVDDS FDEFKA YGTTLVCGFA I G+PVGI+ANNGILFSESA KGAHFI Sbjct: 301 FDIREVIARIVDDSAFDEFKARYGTTLVCGFAHIWGHPVGIIANNGILFSESALKGAHFI 360 Query: 361 ELCCQRKIPLVFLQNITGFMVGKKYEHEGIAKHGAKMVTAVSCATVPKFTVLIGGSYGAG 420 ELCCQRKIPLVFLQNITGFMVG+KYE+EGIA++GAKMVTAV+ A VPKFTV+IGGS+GAG Sbjct: 361 ELCCQRKIPLVFLQNITGFMVGRKYENEGIARNGAKMVTAVATAKVPKFTVIIGGSFGAG 420 Query: 421 NYGMCGRAFEPTLMWMWPNARISVMGGEQAAGVLATVRKDGLARKGETMSAEEEAKFKAP 480 NYGMCGRA+ P +WMWPNARISVMGGEQAA VLATV++DG+ KG + SAEEE FK P Sbjct: 421 NYGMCGRAYSPRFLWMWPNARISVMGGEQAASVLATVKRDGIEGKGGSWSAEEEEAFKQP 480 Query: 481 IIAQYDKEGHPYHASARLWDDGIIDPAQTRDVLGLAISAALNAPIEETRFGVFRM 535 I QY+ +GHPY+ASARLWDDG+IDPAQTRDVLGL +SA +NAPIE+TRFGVFRM Sbjct: 481 IREQYEHQGHPYYASARLWDDGVIDPAQTRDVLGLGLSATMNAPIEDTRFGVFRM 535 Lambda K H 0.320 0.137 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1033 Number of extensions: 52 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 535 Length adjustment: 35 Effective length of query: 500 Effective length of database: 500 Effective search space: 250000 Effective search space used: 250000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory