GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Burkholderia phytofirmans PsJN

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate BPHYT_RS19985 BPHYT_RS19985 CoA-transferase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>FitnessBrowser__BFirm:BPHYT_RS19985
          Length = 399

 Score =  249 bits (635), Expect = 1e-70
 Identities = 145/404 (35%), Positives = 219/404 (54%), Gaps = 10/404 (2%)

Query: 4   LSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTTEA 63
           L+ +RVLDLS VLAGP+    LA LGA+VIKVE P  GD  R  G    KDA   N    
Sbjct: 5   LAGVRVLDLSNVLAGPFCAYQLALLGAEVIKVEHPEGGDLARRLGAD--KDASARNM--G 60

Query: 64  AYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKAINP 123
           A +++ N  KQSVT++   P G+ ++REL   +D+L+ENF+ G +   GLD+++L+ +NP
Sbjct: 61  ASFVAVNAGKQSVTLNLKDPRGKAILRELVKTADVLVENFRPGVMTRLGLDFEALREVNP 120

Query: 124 QLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVGVALTDILTG 183
           +L+YC+I+GFG  G ++KR  YD +IQG+ G+MS+T    GD  + P++VG  ++D + G
Sbjct: 121 KLVYCAISGFGMDGEFSKRPAYDQIIQGISGVMSVT----GDADSAPLRVGYPVSDTVGG 176

Query: 184 LYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHPNIV 243
           L +   I AAL      G G+ +D+++L+  +A +     N+L  G  P  +GN +    
Sbjct: 177 LTAAFGICAALLDARATGHGRMLDVSMLEATLATMGWVVSNFLNAGVTPTPMGNENFTAA 236

Query: 244 PYQDFPTADGDFILTVGNDGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLIRQA 303
           P   F T DG   +    + QF    ++ G+    DDPRF+    R  NRA L   I  A
Sbjct: 237 PSGTFKTGDGPLNIAANENKQFVSLCQLIGRADLLDDPRFSERNARKMNRAALKAEIEAA 296

Query: 304 TVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMELPHLLAGKVPQVA-SPI 362
               + A W  +  +AGVP G +  + ++ A P +++RG   E       +  +V  +  
Sbjct: 297 LARDSAANWEARFFEAGVPAGRVMSVPEILAHPHLESRGFIREFAADATTERQRVTRAGF 356

Query: 363 RLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
           RL +         P+L  HT E L   LG D+A +   R  GV+
Sbjct: 357 RLHDADTAPGTPAPVLSAHTREQL-AALGYDDAHIDQLRAEGVV 399


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 455
Number of extensions: 20
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 399
Length adjustment: 31
Effective length of query: 375
Effective length of database: 368
Effective search space:   138000
Effective search space used:   138000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory