Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate BPHYT_RS25160 BPHYT_RS25160 NAD/NADP-dependent betaine aldehyde dehydrogenase
Query= BRENDA::P77674 (474 letters) >FitnessBrowser__BFirm:BPHYT_RS25160 Length = 489 Score = 337 bits (865), Expect = 4e-97 Identities = 191/479 (39%), Positives = 278/479 (58%), Gaps = 14/479 (2%) Query: 4 KLLINGELVSG-EGEKQPVYNPATGDVLLEIAEASAEQVDAAVRAADAAFAEWGQTTPKV 62 +L I G V GE +PATG+ L + +ASA VD AVR+A EW T Sbjct: 8 RLYIGGGYVDATSGETFDTLDPATGETLASVQQASAADVDRAVRSAKQGQREWAALTAMQ 67 Query: 63 RAECLLKLADVIEENGQVFAELESRNCGKPLHSAFNDEIPAIVDVFRFFAGAARCLNGLA 122 R+ L + D++ E A LE+R+ GKP+ +I DV ++AG A + G Sbjct: 68 RSRILRRAVDLLRERNDELAALETRDTGKPIAETLAVDIVTGADVIEYYAGLATAIEGQ- 126 Query: 123 AGEYLEGHTSMI--RRDPLGVVASIAPWNYPLMMAAWKLAPALAAGNCVVLKPSEITPLT 180 + TS + RR+PLGV A I WNYP+ +A WK APALAAGN ++ KPSEITPL+ Sbjct: 127 --QIPLRPTSFVYTRREPLGVCAGIGAWNYPIQIACWKSAPALAAGNAMIFKPSEITPLS 184 Query: 181 ALKLAELAKDI-FPAGVINILFGRGKTVGDPLTGHPKVRMVSLTGSIATGEHIISHT-AS 238 ALKLAE+ + PAGV N++ G G+ VG L HP + +S TG + TG+ ++S AS Sbjct: 185 ALKLAEIFTEAGVPAGVFNVVQGDGR-VGAMLAAHPDIEKISFTGGVETGKKVMSMAGAS 243 Query: 239 SIKRTHMELGGKAPVIVFDDADIEAVVEGVRTFGYYNAGQDCTAACRIYAQKGIYDTLVE 298 S+K MELGGK+P++VFDDA++E + + ++++GQ CT R++ Q+G+ D Sbjct: 244 SLKEVTMELGGKSPLLVFDDANLERAADIATSANFFSSGQVCTNGTRVFVQRGVLDRFEA 303 Query: 299 KLGAAVATLKSGAPDDESTELGPLSSLAHLERVGKAVEEAKATGHIKVITGGEKRK---- 354 + V ++ G P D +T GPL S A L +V +E K G +++ GG++ Sbjct: 304 LVLERVKRIRVGKPTDAATNFGPLVSAAQLHKVLGYIESGKQEG-ARLVAGGKRLTEGHF 362 Query: 355 GNGYYYAPTLLAGALQDDAIVQKEVFGPVVSVTPFDNEEQVVNWANDSQYGLASSVWTKD 414 G Y PT+ A D IV++E+FGPV+S+ FD+E++ + AN + YGLA+ V T++ Sbjct: 363 AGGQYVEPTVFADCRDDMRIVREEIFGPVMSILVFDDEDEAIARANHTAYGLAAGVVTEN 422 Query: 415 VGRAHRVSARLQYGCTWVNTHFMLVSEMPHGGQKLSGYGKDMSLYGLEDYTVVRHVMVK 473 + RAHRV RL+ G W+NT +EMP GG K SG G++ + LE YT ++ V V+ Sbjct: 423 LARAHRVIHRLEAGICWINTWGESPAEMPVGGYKQSGVGRENGITTLEHYTRIKSVQVE 481 Lambda K H 0.317 0.134 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 577 Number of extensions: 24 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 474 Length of database: 489 Length adjustment: 34 Effective length of query: 440 Effective length of database: 455 Effective search space: 200200 Effective search space used: 200200 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory