Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate BPHYT_RS20740 BPHYT_RS20740 D-ribose transporter ATP binding protein
Query= TCDB::G4FGN3 (494 letters) >FitnessBrowser__BFirm:BPHYT_RS20740 Length = 503 Score = 431 bits (1109), Expect = e-125 Identities = 231/499 (46%), Positives = 336/499 (67%), Gaps = 6/499 (1%) Query: 1 MKPILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGE 60 M P++ VK + KRFPGV AL V E GEVHA++GENGAGKSTLMKI+AGVY D GE Sbjct: 1 MTPLISVKRLSKRFPGVRALHEVQFELVAGEVHALMGENGAGKSTLMKILAGVYTRDTGE 60 Query: 61 IIYEGRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMGDEEKR--GIFIDYKKMY 118 I+YEG+ V + P EA G+ + QEL +M++L++A+N+F+G E + G+F+D K+ Sbjct: 61 ILYEGQPVDFQSPREAQAVGVGIIHQELQLMNHLTIAQNMFIGREPRGRLGLFLDEDKLN 120 Query: 119 REAEKFMKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETE 178 +A + + +DP + ++A QQMVEIA+A+ ++VLI+DEPTS+L E Sbjct: 121 AQAHDILAR-MHVTLDPRALVSSLTVARQQMVEIAKALSFDSRVLIMDEPTSALNDAEIA 179 Query: 179 KLFEVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMV 238 +LF +++ LK++GV II+ISH+++E+ +I D+V+VLRDGEY+ T ++++ T + I+ MMV Sbjct: 180 ELFRIIRDLKKRGVGIIYISHKMDELKQIADRVTVLRDGEYVATVAVKDTTVQAIIGMMV 239 Query: 239 GRKL-EKFYIKEAHEPGEVVLEVKNLS-GERFENVSFSLRRGEILGFAGLVGAGRTELME 296 GR L + + GEV LEV L+ G +VSF+LR+GEILGFAGL+GAGRTE+ Sbjct: 240 GRTLTDAAPSQHIANQGEVALEVTRLNAGPLVRDVSFALRKGEILGFAGLMGAGRTEVAR 299 Query: 297 TIFGFRPKRGGEIYIEGKRVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHNVSLPSL 356 +FG P GEI ++G + I +P DA+ +GIG + EDRK+ GL MS+ N+ + +L Sbjct: 300 AVFGADPIESGEIVVKGVKATIRNPSDAVARGIGYLSEDRKRFGLATGMSVESNIVMSNL 359 Query: 357 DR-IKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKPKI 415 + + F+ + ++ A I IR ++V LSGGNQQK+V+AKWL + Sbjct: 360 RKFLSLNFFLRRTQIRKTAAHFINLLAIRTPSATQEVRLLSGGNQQKIVIAKWLERDCDV 419 Query: 416 LILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKLAGI 475 L DEPTRGIDVGAK+EIY+++ LA +G ++MISSELPE+L+MSDRI VM G++ G Sbjct: 420 LFFDEPTRGIDVGAKSEIYKLLRSLADQGKAIVMISSELPEILRMSDRIVVMCEGRITGE 479 Query: 476 IDAKEASQEKVMKLAAGLE 494 + A A+QE++M+LA E Sbjct: 480 LAAAGATQERIMQLATQRE 498 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 636 Number of extensions: 31 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 503 Length adjustment: 34 Effective length of query: 460 Effective length of database: 469 Effective search space: 215740 Effective search space used: 215740 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory