Align Inositol transport system ATP-binding protein (characterized)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 168 bits (425), Expect = 2e-46 Identities = 88/244 (36%), Positives = 147/244 (60%), Gaps = 5/244 (2%) Query: 3 MSQPLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKG 62 +S+ +++++G+ K F V+AL G+ +D+ GE H + G+NGAGKST +K +SG ++ +G Sbjct: 19 VSREILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEG 78 Query: 63 DILFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHD 122 + + G P+ F+ DA AAGIA +HQ L ++P +SV+ N ++ EP K GP D+ Sbjct: 79 VVRYRGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREP--KRGP--FVDYR 134 Query: 123 YANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVR 182 N ++++G+N+ P VG LS ++Q V IA+A+ A+VLI+DEPTS+L Sbjct: 135 TLNSNAQRCLQRIGLNV-SPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTES 193 Query: 183 QTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQD 242 +T + I ++R GVA+++I+H + + DR TVL G+ + T+ + E+ Sbjct: 194 ETVQLFRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVA 253 Query: 243 MMAG 246 M G Sbjct: 254 RMVG 257 Score = 89.0 bits (219), Expect = 2e-22 Identities = 60/224 (26%), Positives = 100/224 (44%), Gaps = 5/224 (2%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIAAGIA 85 +S ++ GE G GAG++ + + G +P G I +P+ PR+AI GIA Sbjct: 291 LSFELRKGEILGFAGLMGAGRTETARAIFGAERPDSGSITLGDEPVTIGSPREAIRHGIA 350 Query: 86 TVHQHLAMIPL---MSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGINLRGP 142 + + L M VS N + N +R I I +R++GI Sbjct: 351 YLSEDRKKDGLALSMPVSANITLAN--VRAISSRGFLRFSEETAIAERYVRELGIRTPTV 408 Query: 143 DQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVAVV 202 Q LSGG +Q + I++ ++ G+++L DEPT + V + +D++ GV VV Sbjct: 409 KQIARNLSGGNQQKIVISKWLYRGSRILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVV 468 Query: 203 FITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 I+ + L + DR V + G+ + S EE+ +G Sbjct: 469 LISSELPELLGMTDRIAVFHEGRITAVLETRQTSQEEILHHASG 512 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 316 Number of extensions: 14 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 516 Length adjustment: 30 Effective length of query: 231 Effective length of database: 486 Effective search space: 112266 Effective search space used: 112266 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory