Align Inositol transport system ATP-binding protein (characterized)
to candidate BPHYT_RS28215 BPHYT_RS28215 D-ribose transporter ATP binding protein
Query= reanno::WCS417:GFF2332 (517 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS28215 BPHYT_RS28215 D-ribose transporter ATP binding protein Length = 509 Score = 437 bits (1123), Expect = e-127 Identities = 232/506 (45%), Positives = 338/506 (66%), Gaps = 7/506 (1%) Query: 7 VSQPPSLQPQTLEEPYLLEIVNISKGFPGVVALADVQLRVRPGTVLALMGENGAGKSTLM 66 + QP S P+ LE+ + SK F V AL+D L + PG V AL+GENGAGKST++ Sbjct: 1 MQQPTSAVPR-------LELRHASKSFGRVRALSDGDLALWPGEVHALLGENGAGKSTVV 53 Query: 67 KIIAGIYQPDAGEIRLRGKPIVFETPLAAQKAGIAMIHQELNLMPHMSIAENIWIGREQL 126 KI+AG++QPD GE+ + G+ F TP A+ AG+A+I+QE L +SIAENI++GR+ + Sbjct: 54 KILAGVHQPDTGELVVDGEARRFATPAEARDAGLAVIYQEPTLFFDLSIAENIFMGRQPV 113 Query: 127 NSLHMVNHREMHRCTAELLARLRINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDE 186 + + + + M R LLA L ++L ++ V LSIA++Q++EIAKA+S ++++LIMDE Sbjct: 114 DRIGRIQYDAMRREVDGLLASLGVDLRADQLVRGLSIADQQVIEIAKALSLNANVLIMDE 173 Query: 187 PTSAITEKEVAHLFSIIADLKSQGKGIVYITHKMNEVFAIADEVAVFRDGHYIGLQRADS 246 PT+A++ EV LF+I+ L+ + I++ITH+++EVFA+ V + RDG + Sbjct: 174 PTAALSLPEVERLFTIVRKLRERDVAILFITHRLDEVFALTQRVTIMRDGAKVFDGLTTD 233 Query: 247 MNSDSLISMMVGRELSQLFPLRETPIGDLLLTVRDLTLDGVFKDVSFDLHAGEILGIAGL 306 +N++++++ MVGR+L +P E P G++ L+VR LT GVFKD+SFD+ AGEI+ +AGL Sbjct: 234 LNTEAIVAKMVGRDLETFYPKAERPPGEVRLSVRGLTRVGVFKDISFDVRAGEIVALAGL 293 Query: 307 MGSGRTNVAETIFGITPSSSGQITLDGKAVRISDPHMAIEKGFALLTEDRKLSGLFPCLS 366 +G+GR+ VA IFGI P SG+I + GK + P A+ G AL+ EDR+ GL LS Sbjct: 294 VGAGRSEVARAIFGIDPLDSGEIWIAGKRLTAGRPAAAVRAGLALVPEDRRQQGLALELS 353 Query: 367 VLENMEMAVLPHYTGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLA 426 + N M VL +G I ++ L +LR+K + TLSGGNQQK +L Sbjct: 354 IARNASMTVLGRLVKHGLISARSETQLANQWGTRLRLKAGDPNAPVGTLSGGNQQKVVLG 413 Query: 427 RWLMTNPRLLILDEPTRGIDVGAKAEIYRLIAFLASEGMAVIMISSELPEVLGMSDRVMV 486 +WL T P++LI+DEPTRGIDVGAKAE+Y +A L +GMAV+MISSELPEVLGM+DRV+V Sbjct: 414 KWLATGPKVLIIDEPTRGIDVGAKAEVYSALAELVRDGMAVLMISSELPEVLGMADRVLV 473 Query: 487 MHEGELMGTLDRSEATQEKVMQLASG 512 MHEG + + R++A +E++M A G Sbjct: 474 MHEGRISADIARADADEERIMGAALG 499 Lambda K H 0.320 0.136 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 642 Number of extensions: 23 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 509 Length adjustment: 35 Effective length of query: 482 Effective length of database: 474 Effective search space: 228468 Effective search space used: 228468 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory