Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 380 bits (977), Expect = e-110 Identities = 218/497 (43%), Positives = 319/497 (64%), Gaps = 16/497 (3%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 +L + VSK FPGV ALD +DL + GEVHA+ GENGAGKSTL+KI+S + AD G V + Sbjct: 23 ILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVRY 82 Query: 63 AG---QVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRA 119 G Q DA Q GIA I+QE NL P LSVAEN+YL REP+R VD+ L + Sbjct: 83 RGAPVQFSSTSDA----QAAGIAIIHQELNLVPHLSVAENIYLAREPKRGPFVDYRTLNS 138 Query: 120 DAQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRL 179 +AQ L +GL ++P V L++A+QQMVEIAKA++L+AR++IMDEPT++L+ E +L Sbjct: 139 NAQRCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQL 198 Query: 180 HAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGR 239 II L+A V+++Y+SHRL E+ + DR TV+RDGR +A+ D A V ++V MVGR Sbjct: 199 FRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARMVGR 258 Query: 240 HVEFERRKRR-RPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGR 298 ++ R+ P ++L+V L G +SF R GEI+G AGL+GAGR Sbjct: 259 PLDDAYPPRQSTPSNQILLRVRD-------LQRTGVFGPLSFELRKGEILGFAGLMGAGR 311 Query: 299 TDLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNL 358 T+ AR IFGA+ +G + + D+P+ + SPR+AI+ GI + EDRK+ G L + N+ Sbjct: 312 TETARAIFGAERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANI 371 Query: 359 SLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMA 418 +L +++A+S+ G ++ E + E Y ++L I+ + LSGGNQQK+++ + + Sbjct: 372 TLANVRAISSRG-FLRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLY 430 Query: 419 LTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREG 478 ++L DEPTRGID+GAK ++ ++ LA GV VV+ISSEL E++ ++DRI VF EG Sbjct: 431 RGSRILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEG 490 Query: 479 VIVADLDAQTATEEGLM 495 I A L+ + ++E ++ Sbjct: 491 RITAVLETRQTSQEEIL 507 Score = 87.4 bits (215), Expect = 1e-21 Identities = 68/249 (27%), Positives = 122/249 (48%), Gaps = 12/249 (4%) Query: 251 PPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTDLARLIFGADP 310 P +L+++GV+ P + A L + GE+ + G GAG++ L ++I G Sbjct: 18 PVSREILQLKGVSKRFPGVVA---LDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYR 74 Query: 311 IAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDH-SIRRNLSLPSLKALSAL 369 G V P++ S DA AGI ++ ++ + H S+ N+ L Sbjct: 75 ADEGVVRYRGAPVQFSSTSDAQAAGIAIIHQELN----LVPHLSVAENIYLAREPKR--- 127 Query: 370 GQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALTPKVLIVDEP 429 G +VD R + Q++ + ++ + T +G LS QQ V + +A++L +VLI+DEP Sbjct: 128 GPFVDYRTLNSNAQRCLQRIGLNVSPS-TLVGALSLAQQQMVEIAKALSLDARVLIMDEP 186 Query: 430 TRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVIVADLDAQTA 489 T + ++ +++ +L GVA++ IS L E+ + DR+ V R+G +A D + Sbjct: 187 TSSLTESETVQLFRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFAST 246 Query: 490 TEEGLMAYM 498 T ++A M Sbjct: 247 TVNEIVARM 255 Score = 62.8 bits (151), Expect = 3e-14 Identities = 52/217 (23%), Positives = 98/217 (45%), Gaps = 7/217 (3%) Query: 29 GEVHALLGENGAGKSTLIKILSAAHAADAGTVTFAGQVL---DPRDAPLRRQQLGIATIY 85 GE+ G GAG++ + + A D+G++T + + PR+A +R ++ Sbjct: 298 GEILGFAGLMGAGRTETARAIFGAERPDSGSITLGDEPVTIGSPREA-IRHGIAYLSEDR 356 Query: 86 QEFNLFPELSVAENMYLG--REPRRLGLVDWSRLRADAQALLNDLGLPLNPDAPV-RGLT 142 ++ L + V+ N+ L R G + +S A A+ + +LG+ + R L+ Sbjct: 357 KKDGLALSMPVSANITLANVRAISSRGFLRFSEETAIAERYVRELGIRTPTVKQIARNLS 416 Query: 143 VAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHAIIAGLKARSVSVIYVSHRLGE 202 QQ + I+K + +R++ DEPT + ++ ++ L A V V+ +S L E Sbjct: 417 GGNQQKIVISKWLYRGSRILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPE 476 Query: 203 VKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGR 239 + M DR V +GR A + +++ GR Sbjct: 477 LLGMTDRIAVFHEGRITAVLETRQTSQEEILHHASGR 513 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 640 Number of extensions: 29 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 515 Length of database: 516 Length adjustment: 35 Effective length of query: 480 Effective length of database: 481 Effective search space: 230880 Effective search space used: 230880 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory