Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate BPHYT_RS08270 BPHYT_RS08270 long-chain fatty acid--CoA ligase
Query= BRENDA::D3GE78 (556 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS08270 BPHYT_RS08270 long-chain fatty acid--CoA ligase Length = 601 Score = 181 bits (460), Expect = 6e-50 Identities = 149/523 (28%), Positives = 237/523 (45%), Gaps = 36/523 (6%) Query: 46 LTTHDLRLWSQRLAAGLRKSGLQRGDRVLLFSGNDLFFPVVFLGVIMAGGIFTGANPTFV 105 LT +L + AA L+ G++ G+RV + N +PV GV+ AGG+ NP + Sbjct: 84 LTYGELGRKATAFAAYLQSIGVKPGERVAIMLPNTFQYPVSLFGVLKAGGVVVNVNPLYT 143 Query: 106 ARELAYQLQDSGATYLLCASNSLETGLEAAKQAKLPQSHIFAYDTSIYDGVTNPQKG--- 162 RELA+QL+DSGA ++ N +T +A K+ + + DG+ KG Sbjct: 144 VRELAHQLKDSGAQTIIVFENFAKTVEDALPGTKVQNVIVTGLGDLLADGLN--LKGRLL 201 Query: 163 -----------CAYWSDLLASEEEGAAFTWDELSTPA--LSSTTLALNYSSGTTGRPKGV 209 AY E + + TP L Y+ GTTG KG Sbjct: 202 NFMLRHVKKMVPAYNLPKAVPLLEALSTGYSRPLTPVRPTHDDIAFLQYTGGTTGVAKGA 261 Query: 210 EISHRNYVANMLQYCHTASLHPDYKARLERSRWLCFLPMYH--AMAQNIFIAAALYRATP 267 ++H+N +AN+LQ A + + E L LP+YH ++ N I L Sbjct: 262 MLTHKNIIANLLQ----AKAWSEGQLTGEVETVLTPLPLYHIYSLTVNALIFMGL-GGRN 316 Query: 268 VYIMSKFDFVKMLEYTQRFRITDFILVPPVVVALAKHPAVGQYDLSSVELVGSGAAPLGR 327 + I + D +++ + + T V + A + + D S ++L +G + Sbjct: 317 ILIANPRDMKRVMMIIRHEKFTGMTAVNTLYNAFLDNEEFCKRDFSDLKLAMAGGMATQK 376 Query: 328 EVCEEVEKLWPPGKINIKQGWGMTEATCSVTGWNPAEIST----SASVGELNANCEAKIM 383 V E + + GK I +G+G+TE + + NP ++S S+G + + + Sbjct: 377 SVAERFKAV--TGK-PIIEGYGLTECS-PIVSMNPVDLSNMRDFEGSIGLPAPSTQVRFR 432 Query: 384 FDGVEVKERNSRGELWVRAPNVMKGYWRNEKATKETKTEDGWLLTGDIAFVDDDGKFHVV 443 D GEL V+ P VMKGYW T + EDGWL TGDI +D G ++ Sbjct: 433 KDDGSWANIGEAGELCVKGPQVMKGYWNRPDETAKVIDEDGWLATGDIGVMDSRGFIRLI 492 Query: 444 DRMKELIKVKGNQVAPAELEALLLEHPAISDVAVIGVV-INNDERPRAYVVLRPGQSATA 502 DR K++I V G V P E+E ++ HP + +VA IGV ER + ++V R S TA Sbjct: 493 DRKKDMILVSGFNVYPNEVEDVIAAHPDVREVAAIGVPDAAQGERVKVFIVKR-NPSLTA 551 Query: 503 NEIAHYLDNKVSAFKRITGGVVFLEAIPKNPSGKILRMKLREQ 545 ++ + ++ +K + V F + +P+ GKILR LR++ Sbjct: 552 EQVIAHCRKNLTGYK-VPKLVEFRDELPQTNVGKILRRALRDE 593 Lambda K H 0.319 0.134 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 709 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 556 Length of database: 601 Length adjustment: 36 Effective length of query: 520 Effective length of database: 565 Effective search space: 293800 Effective search space used: 293800 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory