Align Benzoyl-CoA oxygenase component B; Benzoyl-CoA 2,3-dioxygenase subunit B; Benzoyl-CoA dioxygenase oxygenase component; EC 1.14.13.208 (characterized)
to candidate BPHYT_RS13340 BPHYT_RS13340 benzoyl-CoA oxygenase
Query= SwissProt::Q9AIX7 (473 letters) >FitnessBrowser__BFirm:BPHYT_RS13340 Length = 475 Score = 727 bits (1877), Expect = 0.0 Identities = 344/472 (72%), Positives = 396/472 (83%) Query: 2 INYSERIPNNVNLNENKTLQRALEQWQPSFLNWWDDMGPENSSNYDVYLRTAVSVDPKGW 61 INYSE+IPNNVNL +++ LQRALEQWQP+FL WW DMGPE S YDVYLRTAVSVD GW Sbjct: 4 INYSEKIPNNVNLADDRALQRALEQWQPNFLAWWGDMGPEGSHGYDVYLRTAVSVDAGGW 63 Query: 62 ADFGYVKMHDYRWGIFLAPQEGEKKITFGEHKGQDVWQEVPGEYRSTLRRIIVTQGDTEP 121 A F +VKM DYRWGIFL P E ++KI FGEHKG+ WQ+VPGE+R+ LRRIIVTQGDTEP Sbjct: 64 AHFDHVKMPDYRWGIFLTPGEQDRKIHFGEHKGEAAWQDVPGEHRANLRRIIVTQGDTEP 123 Query: 122 ASVEQQRHLGLTAPSLYDLRNLFQVNVEEGRHLWAMVYLLHAHFGRDGREEGEALLERRS 181 ASVEQQRHLGLTAPS+YDLRNLFQVNVEEGRHLWAMVYLLH +FGRDGREE EALL RRS Sbjct: 124 ASVEQQRHLGLTAPSMYDLRNLFQVNVEEGRHLWAMVYLLHRYFGRDGREEAEALLGRRS 183 Query: 182 GDEDNPRILTAFNEKTPDWLSFFMFTFITDRDGKFQLASLAESAFDPLARTCKFMLTEEA 241 GD+DNPRIL AFNEKTPDWL+FFMFT+ TDRDGKFQL++LAES FDPLART +FMLTEEA Sbjct: 184 GDDDNPRILGAFNEKTPDWLAFFMFTYFTDRDGKFQLSALAESGFDPLARTTRFMLTEEA 243 Query: 242 HHLFVGESGIARVIQRTCEVMKELGTDDPAKLRAAGVIDLPTLQKYLNFHYSVTSDLYGA 301 HH+FVGESG++RVIQRT +VM ELGTDD +KLRAAGVIDLPT+Q+YLNFHYSVT DL+GA Sbjct: 244 HHMFVGESGVSRVIQRTAQVMNELGTDDVSKLRAAGVIDLPTIQRYLNFHYSVTIDLFGA 303 Query: 302 EISSNAATYYTNGLKGRFEEEKIGDDHKLQNSEYEVMDVAGDKILTRHVPALSALNERLR 361 + SSNAAT+Y++GLKGR+EE K DDH+L Y+++DV K++ R VP L+A+NE LR Sbjct: 304 DHSSNAATFYSSGLKGRYEENKRDDDHQLNGQSYKLLDVQDGKLVEREVPMLNAMNEVLR 363 Query: 362 DDWITDVQAGVDRWNRIPAKFGFDFRFTLPHKGFHRKIGMFADVHVSPDGRLISEAEWTH 421 DD+I D AGV RWN++ K G DFR T+PHK F+R+IG FA VSPDGR++SE+EW Sbjct: 364 DDYIKDSVAGVGRWNKVLDKAGIDFRMTVPHKAFNRQIGTFAGTRVSPDGRVVSESEWAA 423 Query: 422 QHKNWLPTESDRLYVHSLMGRCLEPGKFANWIAAPARGINNQPVNFEYVRFN 473 WL T DR YV SLMGR E GKFANWIA PA G+N QPV+FEYVRFN Sbjct: 424 NEAKWLATPEDRAYVASLMGRVTEAGKFANWIAPPAMGVNRQPVDFEYVRFN 475 Lambda K H 0.320 0.137 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 844 Number of extensions: 26 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 475 Length adjustment: 33 Effective length of query: 440 Effective length of database: 442 Effective search space: 194480 Effective search space used: 194480 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory