Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate BPHYT_RS29875 BPHYT_RS29875 betaine-aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >FitnessBrowser__BFirm:BPHYT_RS29875 Length = 483 Score = 422 bits (1084), Expect = e-122 Identities = 217/459 (47%), Positives = 294/459 (64%), Gaps = 6/459 (1%) Query: 57 VNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDASHRGRLLNRLADLIERDR 116 +NP+T E I VA+G DVD AV+AARAA ++ W + + R R+L RLA L+ + Sbjct: 30 INPATEEPIALVAQGSAADVDTAVRAARAALKV---WNGIRTAERARILMRLAGLMRANL 86 Query: 117 TYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGKTIPIDGDFFSYTRHEPV 176 LAALE+LD GKP D+ + L YYAGW DK +G+ +P+ D +YT EPV Sbjct: 87 EELAALESLDAGKPIAAVMRQDIPAAIDTLEYYAGWCDKINGQVVPVRPDALTYTLREPV 146 Query: 177 GVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTALYVANLIKEAGFPPGVVN 236 GV I+PWNFPL++ WK+ PALA G +++K AE TPLTAL + L EAG PPGV+N Sbjct: 147 GVVAAIVPWNFPLMIGMWKIAPALACGCTLIVKPAEITPLTALRIGELALEAGVPPGVLN 206 Query: 237 IVPGFGPTAGAAIASHEDVDKVAFTGSTEIGR-VIQVAAGSSNLKRVTLELGGKSPNIIM 295 IV G G G A+ +H VDKV FTGS +GR ++Q AAG N KRVTLELGGKS N+I Sbjct: 207 IVTGKGRVVGDALVAHPGVDKVTFTGSPSVGRGILQGAAG--NFKRVTLELGGKSANLIF 264 Query: 296 SDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVERSVARAKSRVVGNPFDSK 355 DA++D AV A +FFN GQ C AGSR D+YDE VER ARAKS VG+P + Sbjct: 265 PDANLDNAVRAAASGIFFNTGQVCSAGSRILAHRDVYDEVVERLAARAKSIKVGDPSSRE 324 Query: 356 TEQGPQVDETQFKKILGYINTGKQEGAKLLCGGGIAADRGYFIQPTVFGDVQDGMTIAKE 415 T GP + Q K +LGY+ TG+ EGA L+ GG +RG+F++PTVF +V+ M I++E Sbjct: 325 TSMGPLISAAQMKTVLGYVETGRAEGASLVTGGARVGERGFFVEPTVFANVEHEMRISQE 384 Query: 416 EIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDLDKANYLSQALQAGTVWVNCYDV 475 EIFGPV +++F + + AN + Y LAA V++ D+ + + +++ L+AGTVW+N Y Sbjct: 385 EIFGPVASVIRFNDEADAIRIANGTLYSLAAGVWSADIGRVHRVARDLRAGTVWINTYGY 444 Query: 476 FGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKVPQ 514 + P+GG SG GRE G+ ++ +TE K V + + Q Sbjct: 445 TDVRLPWGGSGDSGFGREHGDVAIENFTEPKAVWLAIDQ 483 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 651 Number of extensions: 25 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 483 Length adjustment: 34 Effective length of query: 483 Effective length of database: 449 Effective search space: 216867 Effective search space used: 216867 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory