Align Monocarboxylic acid transporter (characterized)
to candidate BPHYT_RS11800 BPHYT_RS11800 acetate permease
Query= SwissProt::Q8NS49 (551 letters) >FitnessBrowser__BFirm:BPHYT_RS11800 Length = 528 Score = 410 bits (1053), Expect = e-119 Identities = 224/538 (41%), Positives = 334/538 (62%), Gaps = 26/538 (4%) Query: 21 LNISVFVVFIIVTMTVVLRVGKSTSESTDFYTGGASFSGTQNGLAIAGDYLSAASFLGIV 80 L I FV FI +++ + + + ++ F+ G + S QNGLA+AGD++SA SFLG+ Sbjct: 10 LRIIAFVGFIGLSLVLTGWSARRSRGTSGFFVAGRNLSPFQNGLALAGDFMSAGSFLGVT 69 Query: 81 GAISLNGYDGFLYSIGFFVAWLVALLLVAEPLRNVGRFTMADVLSFRLRQKPVRVAAACG 140 G +SL G+DG +Y +GF W++ +L+VAEP+RN G++T++DV++ RLR + VR A + Sbjct: 70 GLVSLFGFDGIVYQVGFIAGWIMIMLIVAEPVRNCGKYTLSDVVALRLRSRGVRAATSVS 129 Query: 141 TLAVTLFYLIAQMAGAGSLVSVLLDIHEFKWQAVVVGIVGIVMIAYVLLGGMKGTTYVQM 200 +L +L YL+AQ+ G G+L S+LL I A +V ++GI+MIAYVL GGM TYVQ+ Sbjct: 130 SLITSLAYLLAQLVGGGALASLLLPIGT---NAAIV-LIGILMIAYVLFGGMVAATYVQI 185 Query: 201 IKAVLLVGGVAIMTVLTFVKVSGGLTTLLNDAVEKHAASDYAATKGYDPTQILEPGLQYG 260 +KAVL+ A++ +L S + L N A P Q PG + Sbjct: 186 VKAVLVWTAGAVLVLLALAHFSFDVGALFNKA----------RLSSLHPAQYFVPGGYF- 234 Query: 261 ATLTTQLDFISLALALCLGTAGLPHVLMRFYTVPTAKEARKSVTWAIVLIGAFYLMTLVL 320 LD +SL LAL LGTAGLPHV+ RFYTVP+A ARKS ++++ +F +M ++L Sbjct: 235 ---KDPLDTLSLTLALALGTAGLPHVMTRFYTVPSAVAARKSAKIGLIVMTSFAVMMILL 291 Query: 321 GYGAAALVGPDRVIAAPGAANAAAPLLAFELGGS-------IFMALISAVAFATVLAVVA 373 G+ A A+VGP ++A + N+A LLA LGG + +A +SA+AFAT+LAVV+ Sbjct: 292 GFSATAIVGPAAILATHSSGNSAITLLATTLGGGAGSAGGELLLACVSAIAFATILAVVS 351 Query: 374 GLAITASAAVGHDIYNAVIRNGQSTEAEQVRVSRITVVVIGLISIVLGILAMTQNVAFLV 433 G+ I++++ + HDI+ + + E QV +++I +V G+ ++ L +L T NVAFLV Sbjct: 352 GIMISSASTISHDIFGQLFSASRDKERRQVVIAKIATIVFGIAAMGLALLVKTFNVAFLV 411 Query: 434 ALAFAVAASANLPTILYSLYWKKFNTTGAVAAIYTGLISALLLIFLSPAVSGNDSAMVPG 493 LAFA+AASANLP IL+S+YW++F GAVAA+ G +S++ L+ L PAV G + Sbjct: 412 GLAFAIAASANLPVILFSMYWRRFTDRGAVAAVLAGTLSSIGLVLLGPAVIGAKGIIFKD 471 Query: 494 ADWAIFPLKNPGLVSIPLAFIAGWIGTLVGKPDNMDDLAAEMEVRSLTGVGVEKAVDH 551 + F L NPGL SIP+ FIAGWIG++ + D ++R L+G+G E A +H Sbjct: 472 ST-PPFWLSNPGLFSIPVGFIAGWIGSVTTSQNAADTSFDAQQLRMLSGLGAEAASEH 528 Lambda K H 0.324 0.138 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 595 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 528 Length adjustment: 35 Effective length of query: 516 Effective length of database: 493 Effective search space: 254388 Effective search space used: 254388 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory