Align Monocarboxylic acid transporter (characterized)
to candidate BPHYT_RS25605 BPHYT_RS25605 symporter
Query= SwissProt::Q8NS49 (551 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS25605 BPHYT_RS25605 symporter Length = 516 Score = 394 bits (1011), Expect = e-114 Identities = 214/532 (40%), Positives = 321/532 (60%), Gaps = 37/532 (6%) Query: 20 ILNISVFVVFIIVTMTVVLRVGKSTSESTDFYTGGASFSGTQNGLAIAGDYLSAASFLGI 79 +L I +F++ + VT+ + + T +++FY G + S +NG A+AGD++SAA+FLG Sbjct: 3 LLTIVIFMIILAVTLMITYWAARRTRTTSEFYAAGGNLSARENGFALAGDWMSAAAFLGF 62 Query: 80 VGAISLNGYDGFLYSIGFFVAWLVALLLVAEPLRNVGRFTMADVLSFRLRQKPVRVAAAC 139 G +SL G DG LY++ A+LV L+L+AEP+RN GR+T DV++ R+++ R+A Sbjct: 63 SGLVSLYGMDGSLYAVAALAAFLVVLMLIAEPVRNTGRYTFGDVIAERMKRPGARLATIV 122 Query: 140 GTLAVTLFYLIAQMAGAGSLVSVLLDIHEFKWQAVVVGIVGIVMIAYVLLGGMKGTTYVQ 199 GT+ V L Y++ QMAGAG+L+ ++L + V V +VGI MI YVL GGM TT+VQ Sbjct: 123 GTVVVNLAYMVPQMAGAGALIKLMLGVP----YDVAVVLVGIGMIVYVLFGGMIATTWVQ 178 Query: 200 MIKAVLLVGGVAIMTVLTFVKVSGGLTTLLNDAVEKHAASDYAATKGYDPTQILEPGLQY 259 ++KA+LL+ ++ + V L +VE+ S A+ GY Sbjct: 179 IVKAMLLLVAACVLVSMLLAAVRFNPLALFA-SVERLYGSKMLASGGY------------ 225 Query: 260 GATLTTQLDFISLALALCLGTAGLPHVLMRFYTVPTAKEARKSVTWAIVLIGAFYLMTLV 319 LD +SL ++ G AGLPH++ RFYTVP A+ ARKSV W + L G+F+++T + Sbjct: 226 ---FHHPLDTMSLFISFIFGVAGLPHIMTRFYTVPDARTARKSVLWLMFLAGSFFMVTTL 282 Query: 320 LGYGAAALVGPDRVIAAPGAANAAAPLLAF-------ELGGSIFMALISAVAFATVLAVV 372 +G+ +A VG D + AA N A PLLA LGG IF+A I A+AFA +LAVV Sbjct: 283 IGFASAVFVGQDAIRAADKGGNLALPLLAQYLGGGAGSLGGQIFLASICAIAFAAILAVV 342 Query: 373 AGLAITASAAVGHDIYNAVIRNGQSTEAEQVRVSRITVVVIGLISIVLGILAMTQNVAFL 432 AGL + +S A+ HD+Y V+R G ++AEQVRV+RI V +G+ +I L +LA NV L Sbjct: 343 AGLTLASSGAIAHDLYVNVLRKGAVSDAEQVRVARIATVAVGIAAIGLSLLAQGLNVGVL 402 Query: 433 VALAFAVAASANLPTILYSLYWKKFNTTGAVAAIYTGLISALLLIFLSPAVSGNDSAMVP 492 V LA +VAAS+N P IL S++W++FNT G + + GL S++ L F+ PA G+ Sbjct: 403 VILAISVAASSNFPIILLSIFWRRFNTAGVIGGVIGGLTSSVALAFVGPAFMGSH----- 457 Query: 493 GADWAIFPLKNPGLVSIPLAFIAGWIGTLVGKPDNMDDLAAE-MEVRSLTGV 543 A+FP+ NP +VS+P+ + W+ T++ +P D E +R+ TG+ Sbjct: 458 ----ALFPIVNPAIVSLPIGLFSAWLCTMLSRPTPTQDGDFEAFYLRAQTGI 505 Lambda K H 0.324 0.138 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 623 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 516 Length adjustment: 35 Effective length of query: 516 Effective length of database: 481 Effective search space: 248196 Effective search space used: 248196 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory