Align ribose transport, ATP-binding protein RbsA; EC 3.6.3.17 (characterized)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= CharProtDB::CH_003578 (501 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 440 bits (1131), Expect = e-128 Identities = 233/493 (47%), Positives = 329/493 (66%), Gaps = 4/493 (0%) Query: 4 LLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLW 63 +LQLKG+ K FPGV AL G L++ G V A+ GENGAGKST+MK+++G Y D G + + Sbjct: 23 ILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVRY 82 Query: 64 LGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYAEAD 123 G F+ +Q AGI IIHQELNL+P L++AENI+L RE R +D++T+ + A Sbjct: 83 RGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLARE-PKRGPFVDYRTLNSNAQ 141 Query: 124 KLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESLFRV 183 + L ++ L LVG LS+ QQMVEIAK LS +++V+IMDEPT +LT++ET LFR+ Sbjct: 142 RCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQLFRI 201 Query: 184 IRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMVGRKLE 243 IREL++ G I+YISHR+ E+ EI D VTV RDG+ IA + AS T + ++ MVGR L+ Sbjct: 202 IRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARMVGRPLD 261 Query: 244 DQYPHLDKAPGD-IRLKVDNLCGPGV-NDVSFTLRKGEILGVSGLMGAGRTELMKVLYGA 301 D YP P + I L+V +L GV +SF LRKGEILG +GLMGAGRTE + ++GA Sbjct: 262 DAYPPRQSTPSNQILLRVRDLQRTGVFGPLSFELRKGEILGFAGLMGAGRTETARAIFGA 321 Query: 302 LPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLTALRYFSR 361 SG +TL V SP++ + +GI Y+SEDRK+DGL L M V N++L +R S Sbjct: 322 ERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANITLANVRAIS- 380 Query: 362 AGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRPKVLILDE 421 + G L+ ++E ++R ++TP+++Q LSGGNQQK+ I++ L ++L DE Sbjct: 381 SRGFLRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLYRGSRILFFDE 440 Query: 422 PTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLSGEFTREQ 481 PTRG+DVGAK IY L+++ ADG+ ++L+SSE+PE+LGM+DRI V HEG ++ Q Sbjct: 441 PTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGRITAVLETRQ 500 Query: 482 ATQEVLMAAAVGK 494 +QE ++ A G+ Sbjct: 501 TSQEEILHHASGR 513 Lambda K H 0.318 0.137 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 626 Number of extensions: 27 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 516 Length adjustment: 34 Effective length of query: 467 Effective length of database: 482 Effective search space: 225094 Effective search space used: 225094 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory