Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate BPHYT_RS17015 BPHYT_RS17015 acetyl-CoA carboxylase biotin carboxylase subunit
Query= metacyc::MONOMER-13597 (509 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS17015 BPHYT_RS17015 acetyl-CoA carboxylase biotin carboxylase subunit Length = 455 Score = 383 bits (983), Expect = e-111 Identities = 205/447 (45%), Positives = 290/447 (64%), Gaps = 6/447 (1%) Query: 4 FSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYL 63 F ++L+ANRGEIA R+ +A +E+G+ + VYSEADK A + K ADEA IG AP+ SYL Sbjct: 2 FEKILIANRGEIALRIQRACRELGVKTVVVYSEADKEAKYVKLADEAVCIGPAPSNLSYL 61 Query: 64 NIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKR 123 N+ +I AAE +AIHPGYGFLSENA+FAE VE++G TFIGP E +R + DK+ K+ Sbjct: 62 NMPALISAAEVTDAEAIHPGYGFLSENADFAERVEQSGFTFIGPRPETIRMMGDKVTAKQ 121 Query: 124 LANMAGVPTAPGSDGPV-TSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDV 182 GVP PGS+G + E +K+A ++GYP+++KAA GGGG G+ V + L++ Sbjct: 122 TMIKTGVPCVPGSEGALPEDPKEIVKIARQVGYPVIIKAAGGGGGRGMRVVHTEAALVNA 181 Query: 183 WERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIE 242 + A +AFG +++EK+ NPRHIE Q++ D + N V ER+C++QRR+QK+IE Sbjct: 182 VNMTREEAGRAFGNPQVYMEKFLENPRHIEIQVLADSFKNAVWLGERDCSMQRRHQKVIE 241 Query: 243 EAPSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPT 302 EAP+P + + + + K + Y GTFE + + +FYF+E+N R+QVEHP Sbjct: 242 EAPAPGIARRLIDRIGDRCADACKKMGYLGAGTFEFLYE--NGEFYFIEMNTRVQVEHPV 299 Query: 303 TELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTY 362 TELI +D+V+ QI++AAGE L F Q D+ +G AIE RINAED F S G +T Sbjct: 300 TELITGVDIVQEQIRIAAGEKLAFRQRDI--VFKGHAIECRINAEDPF-KFIPSPGRLTS 356 Query: 363 YREPTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGGIKT 422 + P GPG+RVDS +G +VPP YDS++ KLI YG +RE AI+ AL++ + GI+T Sbjct: 357 WHMPGGPGIRVDSHAYNGYFVPPNYDSMIGKLIAYGATREQAIKRMRIALSEMVVEGIQT 416 Query: 423 TIELYKWIMQDPDFQEGKFSTSYISQK 449 I L++ +M D F EG S Y+ + Sbjct: 417 NIPLHRELMLDAKFVEGGTSIHYLENR 443 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 575 Number of extensions: 24 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 455 Length adjustment: 34 Effective length of query: 475 Effective length of database: 421 Effective search space: 199975 Effective search space used: 199975 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory