Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate BPHYT_RS16930 BPHYT_RS16930 arabinose ABC transporter ATP-binding protein
Query= TCDB::G4FGN3 (494 letters) >FitnessBrowser__BFirm:BPHYT_RS16930 Length = 512 Score = 418 bits (1074), Expect = e-121 Identities = 224/498 (44%), Positives = 333/498 (66%), Gaps = 13/498 (2%) Query: 1 MKPILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGE 60 M L +I K FPGV AL GVS + G+VH ++GENGAGKSTL+KI+ G YQPD G Sbjct: 1 MSATLRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDSGR 60 Query: 61 IIYEGRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMGDEEKRGIFIDYKKMYRE 120 ++ +G VR+ + +I AGI + QEL + +L+VAEN+ +G +++ RE Sbjct: 61 VMIDGNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQLPNSLGWVN----KRE 116 Query: 121 AEKFMKEE---FGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKET 177 A++F++E G+ +DP KL K SIA +QMVEI +A+ + A+V+ LDEPTSSL+ +ET Sbjct: 117 AKRFVRERLEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHRET 176 Query: 178 EKLFEVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGT-DSIENLTKEKIVEM 236 E LF++V+ L+ A+I+ISHR++EI+E+CD ++ RDG I + ++E +T++ IV Sbjct: 177 EVLFKLVRDLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIVSE 236 Query: 237 MVGRKLEKFYIKEAHEPGEVVLEVKNLSGERF-ENVSFSLRRGEILGFAGLVGAGRTELM 295 MVGR++ Y A GEV K + G + SF +RRGEI+GF GLVGAGR+ELM Sbjct: 237 MVGREISDIYNYSARPLGEVRFAAKGIEGHALAQPASFEVRRGEIVGFFGLVGAGRSELM 296 Query: 296 ETIFGFRPKRGGEIYIEGKRVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHNVSLPS 355 ++G K+GGE+ ++GK +++ +AI GI L PEDRK+ G++ + ++ N+++ Sbjct: 297 HLVYGADHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMATVSENINISC 356 Query: 356 LDR-IKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKP- 413 ++ G F+ K+E E AD IK I+ +K+ +LSGGNQQK +L++WLA +P Sbjct: 357 RRHYLRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAILSRWLA-EPD 415 Query: 414 -KILILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKL 472 K++ILDEPTRGIDVGAK EIY ++ QLA+ G ++MISSELPEVL +SDRI VM G++ Sbjct: 416 LKVVILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDRIVVMRQGRI 475 Query: 473 AGIIDAKEASQEKVMKLA 490 +G + K+A+++ V+ LA Sbjct: 476 SGELTRKDATEQSVLSLA 493 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 675 Number of extensions: 37 Number of successful extensions: 11 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 512 Length adjustment: 34 Effective length of query: 460 Effective length of database: 478 Effective search space: 219880 Effective search space used: 219880 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory