Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 379 bits (972), Expect = e-109 Identities = 214/490 (43%), Positives = 304/490 (62%), Gaps = 1/490 (0%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILL 65 +LQ + V+K + GV AL L L AG VHA+CG NGAGKST + I+ G + D G + Sbjct: 23 ILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVRY 82 Query: 66 NGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRTR 125 GAPVQF+ S+A AAGIA+I QEL +P+++VAENI+L REP+R G VD + LN + Sbjct: 83 RGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKR-GPFVDYRTLNSNAQ 141 Query: 126 ELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFKA 185 L + +V ++ + LS+AQ Q+VEIAKA S D +V+IMDEPTS++ E E LF+ Sbjct: 142 RCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQLFRI 201 Query: 186 IRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQELT 245 IR L A G I+Y+SHRL E+A+I D ++ RDG + + A + +V +VG+ L Sbjct: 202 IRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARMVGRPLD 261 Query: 246 RIDHKVGRECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNCIYGL 305 + L+V +L R G F +S +LR+GEILG GLMG+GR+E I+G Sbjct: 262 DAYPPRQSTPSNQILLRVRDLQRTGVFGPLSFELRKGEILGFAGLMGAGRTETARAIFGA 321 Query: 306 TVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYKRLSS 365 DSGS+TL +P+ IG P+ I G++ ++EDRK GL L+ + +NI L+ + +SS Sbjct: 322 ERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANITLANVRAISS 381 Query: 366 WSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCLLCDEP 425 + +ET +AE V+ L I+T +++ ++SGGNQQK+V++K L L DEP Sbjct: 382 RGFLRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLYRGSRILFFDEP 441 Query: 426 TRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVTISTDTAL 485 TRGID GAK IY L+D+ G +++SSE PELL ++DRIAVF GR+ + Sbjct: 442 TRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGRITAVLETRQT 501 Query: 486 SQEALLRLAS 495 SQE +L AS Sbjct: 502 SQEEILHHAS 511 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 591 Number of extensions: 19 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 516 Length adjustment: 34 Effective length of query: 461 Effective length of database: 482 Effective search space: 222202 Effective search space used: 222202 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory