Align 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate BPHYT_RS28770 BPHYT_RS28770 aldehyde dehydrogenase
Query= reanno::WCS417:GFF827 (481 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS28770 BPHYT_RS28770 aldehyde dehydrogenase Length = 480 Score = 632 bits (1631), Expect = 0.0 Identities = 312/474 (65%), Positives = 375/474 (79%), Gaps = 1/474 (0%) Query: 6 RFDNYINGQWVAGADYCVNLNPSELSDVIGEYAKADVTQVNAAIDAARAAFPAWSTSGIQ 65 +F N++ G+WV G D+ N+NPS+ SDVIG +A+A Q AI +AR+AF WS S Q Sbjct: 3 QFKNFVGGEWVDGNDFAPNVNPSDTSDVIGHFARASADQTQKAIASARSAFRTWSLSTPQ 62 Query: 66 ARHDALDKVGSEILARREELGTLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLRLSGDY 125 R D LD+ GS ILAR+ ELG LLAREEGKTL EA+GEV RAG IFKFFAGE LR+ G+ Sbjct: 63 QRFDLLDQAGSTILARKNELGKLLAREEGKTLAEAVGEVGRAGQIFKFFAGEALRVGGEI 122 Query: 126 VPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVIKPAELVPGCAW 185 +PSVRPG+ VEVTRE +GV+GLITPWNFPIAIPAWKIAPALAYGNCVVIKPAELVPG W Sbjct: 123 LPSVRPGLTVEVTREPVGVIGLITPWNFPIAIPAWKIAPALAYGNCVVIKPAELVPGSVW 182 Query: 186 ALAEIISRAGFPAGVFNLVMGSGRVVGDVLVNSPKVDGISFTGSVGVGRQIAVSCVSRQA 245 L +II+ AG PAGV NLVMG G +VG++LV S VD +SFTGSVG G+ IA CV+ Sbjct: 183 ELVKIIAEAGAPAGVINLVMGMGSIVGEILVMSADVDAVSFTGSVGTGQAIAAKCVATGK 242 Query: 246 KVQLEMGGKNPQIILDDADLKQAVELSVQSAFYSTGQRCTASSRLIVTAGIHDQFVAAMA 305 K QLEMGGKNP ++LDDADL AVE + AFYSTGQRCTASSRLIVT+GIHD+FV AM Sbjct: 243 KFQLEMGGKNPMVVLDDADLDVAVEACINGAFYSTGQRCTASSRLIVTSGIHDRFVEAML 302 Query: 306 ERMKSIKVGHALKSGTDIGPVVSQAQLDQDLKYIDIGQSEGARLVSGGGLVTCDTEGYYL 365 RM+S+K+G+AL + T IGPVV QL+QD +YI++ ++EG V GG VT TEG++L Sbjct: 303 ARMRSLKIGNALDASTQIGPVVDAKQLEQDERYIELARNEGGS-VFGGERVTSATEGFFL 361 Query: 366 APTLFADSEAAMRISREEIFGPVANVVRVADYEAALAMANDTEFGLSAGIATTSLKYANH 425 AP L ++ AM I+REE+FGPVA+V++VA+YE ALA+AND+ FGLSAGI T SL +A+H Sbjct: 362 APALVTNTTPAMTINREEVFGPVASVIKVANYEEALAVANDSPFGLSAGICTMSLAHASH 421 Query: 426 FKRHSQAGMVMVNLPTAGVDYHVPFGGRKGSSYGSREQGRYAQEFYTVVKTSYI 479 FKRH QAGMVM+N TAGVDYHVPFGGRKGSS G REQG YA+EFYT+VKT+Y+ Sbjct: 422 FKRHVQAGMVMINTATAGVDYHVPFGGRKGSSLGPREQGTYAREFYTIVKTAYV 475 Lambda K H 0.318 0.134 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 667 Number of extensions: 15 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 480 Length adjustment: 34 Effective length of query: 447 Effective length of database: 446 Effective search space: 199362 Effective search space used: 199362 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory