Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate BPHYT_RS16060 BPHYT_RS16060 ribonucleotide-diphosphate reductase subunit alpha
Query= uniprot:Q9WXX0 (520 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS16060 BPHYT_RS16060 ribonucleotide-diphosphate reductase subunit alpha Length = 506 Score = 393 bits (1010), Expect = e-114 Identities = 208/499 (41%), Positives = 309/499 (61%), Gaps = 9/499 (1%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEILV 73 ILK I K FPGV A+ + E+ EI +L+GENGAGKSTL+KIL G+ +PD G I + Sbjct: 4 ILKLDNITKSFPGVKALQGIHLEIERGEIHALLGENGAGKSTLMKILCGIYQPDEGTITI 63 Query: 74 NGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYM 133 GE F + DA G+ ++ QE +L + EN+FL E G ++ M Sbjct: 64 EGEARHFSNYHDAVAAGVGIVFQEFSLIPYLNAVENMFLGRELKNGL-----GLLERGKM 118 Query: 134 YTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETE 193 + + +G +R L+ AQ+Q VEI KAL E RI+ +DEPT++LT E E Sbjct: 119 RRAAAAIFQRLGVTIDLSVPIRELSVAQQQFVEIGKALSLEARILILDEPTATLTPAEAE 178 Query: 194 RLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMV 253 LF I+ LK +G++++F+SH L+E+ + DRI V+RDG+ +G + + +V +++MMV Sbjct: 179 HLFAIMRELKQQGVAMIFISHHLEEIFEVCDRITVLRDGQYVGMTEVAQSNVGHLVEMMV 238 Query: 254 GREVE--FFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETM 311 GR +E F P +I L+V L+ +SF +R+GE+LGFAGLVG+GRTET Sbjct: 239 GRRIENSFPPKPPLRADAKIVLDVEKLQLLKDSPVLSFTLREGEILGFAGLVGSGRTETA 298 Query: 312 LLVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPS 371 L V G + +I +NG ++ +P DA++ G+G++PE RK +GL+ ++K NI + + Sbjct: 299 LAVIGADPAYVKEIRINGTAAKLSDPADALRAGVGILPESRKTEGLITDFSIKQNISINN 358 Query: 372 LKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNAD 431 L K +D+R E + D +KR+ +K P+++ LSGGNQQKVV+A+WL + + Sbjct: 359 LGKYRSLRFFIDQRSEARATADIMKRVGVKAPTMHTEVATLSGGNQQKVVIARWLNHHTN 418 Query: 432 ILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITA 491 ILIFDEPTRGIDVGAKAEI+ ++REL A+G ++IMISSELPEI+ + DR+ V +G I A Sbjct: 419 ILIFDEPTRGIDVGAKAEIYLLMRELTARGYSIIMISSELPEIVGMCDRVAVFRQGRIEA 478 Query: 492 VLDNREKRVTQEEIMYYAS 510 +L+ + +M YA+ Sbjct: 479 MLEG--DAIDSNAVMTYAT 495 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 27 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 506 Length adjustment: 35 Effective length of query: 485 Effective length of database: 471 Effective search space: 228435 Effective search space used: 228435 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory