Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= uniprot:Q9WXX0 (520 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein Length = 516 Score = 437 bits (1123), Expect = e-127 Identities = 241/501 (48%), Positives = 332/501 (66%), Gaps = 10/501 (1%) Query: 13 EILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEIL 72 EIL+ KG+ KRFPGVVA+D +D ++ E+ ++ GENGAGKSTL+KI++G + D G + Sbjct: 22 EILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVR 81 Query: 73 VNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENY 132 G V+F S DA GI++IHQELNL +++VAENI+LA E RG VD Sbjct: 82 YRGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKRGPF------VDYRT 135 Query: 133 MYTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEET 192 + + ++ L IG SP LV L+ AQ+QMVEI KAL + R++ MDEPTSSLT ET Sbjct: 136 LNSNAQRCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESET 195 Query: 193 ERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMM 252 +LF II L++ G++++++SHRLDE+ I DR+ V+RDG+ I V+ I+ M Sbjct: 196 VQLFRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARM 255 Query: 253 VGREVE-FFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETM 311 VGR ++ +P T +I L VR+L+ +SFE+RKGE+LGFAGL+GAGRTET Sbjct: 256 VGRPLDDAYPPRQSTPSNQILLRVRDLQRTGVFGPLSFELRKGEILGFAGLMGAGRTETA 315 Query: 312 LLVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPS 371 +FG + +SG I + V I +P +AI+ GI + EDRK GL L M V NI L + Sbjct: 316 RAIFGAERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANITLAN 375 Query: 372 LKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNAD 431 ++ IS G L +E I+E YV+ L I+TP++ QI NLSGGNQQK+V++KWL + Sbjct: 376 VRAISSRGF-LRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLYRGSR 434 Query: 432 ILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITA 491 IL FDEPTRGIDVGAK I+ ++ LAA G V++ISSELPE+L ++DRI V EG ITA Sbjct: 435 ILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGRITA 494 Query: 492 VLDNREKRVTQEEIMYYASGQ 512 VL+ R+ +QEEI+++ASG+ Sbjct: 495 VLETRQ--TSQEEILHHASGR 513 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 631 Number of extensions: 28 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 516 Length adjustment: 35 Effective length of query: 485 Effective length of database: 481 Effective search space: 233285 Effective search space used: 233285 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory