GapMind for catabolism of small carbon sources

 

Aligments for a candidate for xylK_Tm in Burkholderia phytofirmans PsJN

Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein

Query= uniprot:Q9WXX0
         (520 letters)



>lcl|FitnessBrowser__BFirm:BPHYT_RS27185 BPHYT_RS27185 D-ribose
           transporter ATP-binding protein
          Length = 516

 Score =  437 bits (1123), Expect = e-127
 Identities = 241/501 (48%), Positives = 332/501 (66%), Gaps = 10/501 (1%)

Query: 13  EILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEIL 72
           EIL+ KG+ KRFPGVVA+D +D ++   E+ ++ GENGAGKSTL+KI++G  + D G + 
Sbjct: 22  EILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVR 81

Query: 73  VNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENY 132
             G  V+F S  DA   GI++IHQELNL  +++VAENI+LA E  RG        VD   
Sbjct: 82  YRGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKRGPF------VDYRT 135

Query: 133 MYTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEET 192
           + + ++  L  IG   SP  LV  L+ AQ+QMVEI KAL  + R++ MDEPTSSLT  ET
Sbjct: 136 LNSNAQRCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESET 195

Query: 193 ERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMM 252
            +LF II  L++ G++++++SHRLDE+  I DR+ V+RDG+ I         V+ I+  M
Sbjct: 196 VQLFRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARM 255

Query: 253 VGREVE-FFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETM 311
           VGR ++  +P    T   +I L VR+L+       +SFE+RKGE+LGFAGL+GAGRTET 
Sbjct: 256 VGRPLDDAYPPRQSTPSNQILLRVRDLQRTGVFGPLSFELRKGEILGFAGLMGAGRTETA 315

Query: 312 LLVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPS 371
             +FG  + +SG I +    V I +P +AI+ GI  + EDRK  GL L M V  NI L +
Sbjct: 316 RAIFGAERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANITLAN 375

Query: 372 LKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNAD 431
           ++ IS  G  L   +E  I+E YV+ L I+TP++ QI  NLSGGNQQK+V++KWL   + 
Sbjct: 376 VRAISSRGF-LRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLYRGSR 434

Query: 432 ILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITA 491
           IL FDEPTRGIDVGAK  I+ ++  LAA G  V++ISSELPE+L ++DRI V  EG ITA
Sbjct: 435 ILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGRITA 494

Query: 492 VLDNREKRVTQEEIMYYASGQ 512
           VL+ R+   +QEEI+++ASG+
Sbjct: 495 VLETRQ--TSQEEILHHASGR 513


Lambda     K      H
   0.319    0.138    0.381 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 631
Number of extensions: 28
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 520
Length of database: 516
Length adjustment: 35
Effective length of query: 485
Effective length of database: 481
Effective search space:   233285
Effective search space used:   233285
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory