Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate 352642 BT3115 putative proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydraogenase (NCBI ptt file)
Query= BRENDA::Q65NN2 (516 letters) >FitnessBrowser__Btheta:352642 Length = 1106 Score = 209 bits (532), Expect = 4e-58 Identities = 151/510 (29%), Positives = 241/510 (47%), Gaps = 28/510 (5%) Query: 6 KHEPFTNFGIEENRKAFEKALETVNNEWLGQS--YPLVIDGERYETENKIVSINPANKEE 63 K+EP T+F + +N++ + Q PL I E E++ + +E Sbjct: 444 KNEPDTDFDLPQNQEWVRSIFSKWKKDGTEQPEIIPLQIGAETVVCESRYPYTDRCQDDE 503 Query: 64 V-VGTVSKATQDHAEKAIQAAAKAFETWRYTDPEERAAVLFRAVAKVRRKKHEFSALLVK 122 V + +S+A EK I+ A WR T EER +++ A ++ + + + Sbjct: 504 VCICEMSQADSAQVEKIIEIAEADPAGWRKTTLEERHRIMYEAANRLADMRGDLIGCMCA 563 Query: 123 EAGKPWNEADADTAEAIDFMEYYARQMIELAKGKPVNSREGERNQYVYTPTGVTVVIPPW 182 GK E D + +EA+D+ +Y M + A V + P G +VI PW Sbjct: 564 VTGKTVIEGDVEVSEAVDYARFYTTAMKKFAALDDVEMK----------PKGTILVISPW 613 Query: 183 NFLFAIMAGTTVAPIVTGNTVVLKPASAAPVIAAKFVEVLEESGLPKGVVNFVPGSGAEV 242 NF AI G VA + GNTV+LKPA+ A +A F + ++G+PK + + + E Sbjct: 614 NFPCAIPVGGIVAGLAGGNTVILKPATVAAPVAWMFAKAFWDAGVPKEALQVII-TRREA 672 Query: 243 GDYLVDHPKTSIITFTGSREVGTRIFERAAKVQPGQTHLKQVIAEMGGKDTVVVDEDCDI 302 L P I TG GT + AK P + AE GGK+ +++ D Sbjct: 673 LKVLTTAPAIKHIILTG----GTDTAQNIAKANP----TTPLSAETGGKNVIILTASGDR 724 Query: 303 ELAAQSIFTSAFGFAGQKCSAGSRAVVHEKVYDE--VLKRVIEITESKKVGEPDSADVYM 360 + A +I TSAFG AGQKCSA S +V VY++ ++ + S K G +A + Sbjct: 725 DHAIMNIVTSAFGNAGQKCSACSLLLVERSVYEDENFRSKLKDAATSLKTGSVWNAGNIV 784 Query: 361 GPVIDQASFNKIMDYIEIGKEEGRLVSGGKGDDSKGYFIEPTIFADLDPKARLMQEEIFG 420 GP+I + +K++ + E LV + D + Y + PT+ + P++ + E+FG Sbjct: 785 GPMITNKN-DKLLQAFNLEPGESWLVPP-RFIDRREYILAPTVKWGVKPESFSFRTELFG 842 Query: 421 PVVAFSKVSSFDEALEVANNTEYGLTGAVITKNRDHINRAKQEFHVGNLYFNRNCTGAIV 480 P+++ + + + +E + + N +YGLT + + + K GNLY NR TGAIV Sbjct: 843 PLLSVACIENLEEGIRLVNGLDYGLTSGLQSLDEKEQKLWKNSVMAGNLYINRGITGAIV 902 Query: 481 GYHPFGGFKMS--GTDSKAGGPDYLALHMQ 508 PFGG K+S G KAGGP+Y ++ Sbjct: 903 NRQPFGGMKLSAFGGGIKAGGPNYCTCFLE 932 Lambda K H 0.315 0.133 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1242 Number of extensions: 72 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 516 Length of database: 1106 Length adjustment: 40 Effective length of query: 476 Effective length of database: 1066 Effective search space: 507416 Effective search space used: 507416 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory