Align high-affinity branched-chain amino acid ABC transporter, ATP-binding protein LivF (characterized)
to candidate 350090 BT0562 putative ABC transporter ATP-binding protein (NCBI ptt file)
Query= CharProtDB::CH_003736 (237 letters) >FitnessBrowser__Btheta:350090 Length = 489 Score = 109 bits (273), Expect = 9e-29 Identities = 73/219 (33%), Positives = 121/219 (55%), Gaps = 10/219 (4%) Query: 10 KVSAHYGKIQALHEVSLHINQGEIVTLIGANGAGKTTLLGTLCGDPRATSGRIVFDDKDI 69 ++S YGK++AL EVS + QGE+ LIG +GAGK+TL L A G + D+ Sbjct: 12 EISKSYGKVEALKEVSFAVEQGEVFGLIGPDGAGKSTLFRILTTLLLADKGTATVNGLDV 71 Query: 70 -TDWQTAKIMREAVAIVPEGRRVFSRMTVEENLAMGGFFAE--RDQFQERIKWVYELFPR 126 TD+ K +R V +P ++ ++VEENL FFA QE + +++ + Sbjct: 72 VTDY---KQIRTKVGYMPGRFSLYQDLSVEENLE---FFATVFHTLIQENYDLIKDIYQQ 125 Query: 127 LHERRIQRAGTMSGGEQQMLAIGRALMSNPRLLLLDEPSLGLAPIIIQQIFDTIEQLREQ 186 + + +RAG +SGG +Q LA+ +L+ P +L LDEP+ G+ P+ ++ + + LR+Q Sbjct: 126 IEPFKKRRAGALSGGMKQKLALSCSLIHKPDILFLDEPTTGVDPVSRKEFWQMLRNLRKQ 185 Query: 187 GMTIFLVEQNANQALKLADRGYVLENGHVVLSDTGDALL 225 G+TI + ++A + DR + +G V DT + +L Sbjct: 186 GITIIVSTPIMDEA-RQCDRIAFINHGQVHGIDTPERIL 223 Score = 82.8 bits (203), Expect = 1e-20 Identities = 58/224 (25%), Positives = 116/224 (51%), Gaps = 10/224 (4%) Query: 1 MEKVMLSFDKVSAHYGKIQALHEVSLHINQGEIVTLIGANGAGKTTLLGTLCGDPRATSG 60 M ++ ++++ +G A+ +S + +GEI +GANGAGKTT + LCG R TSG Sbjct: 243 MAAPVIEVEQLTKSFGHFTAVDHISFQVQRGEIFGFLGANGAGKTTAMRMLCGLSRPTSG 302 Query: 61 RIVFDDKDITDWQTAKIMREAVAIVPEGRRVFSRMTVEENLAM-GGFFAERD-QFQERIK 118 DI ++ A+ ++ + + + ++ + V EN+ + G + ++ + +E+ Sbjct: 303 VGKVAGYDI--FREAEQVKRHIGYMSQKFSLYEDLKVWENIRLFAGIYGMKEMEIEEKTD 360 Query: 119 WVYELFPRL--HERRIQRAGTMSGGEQQMLAIGRALMSNPRLLLLDEPSLGLAPIIIQQI 176 EL RL + R + G +Q LA ++ P+++ LDEP+ G+ P +Q Sbjct: 361 ---ELLERLGFADERDTLVKNLPLGWKQKLAFSVSIFHEPKIVFLDEPTGGVDPATRRQF 417 Query: 177 FDTIEQLREQGMTIFLVEQNANQALKLADRGYVLENGHVVLSDT 220 ++ I Q ++G+T+F+ ++A + +R ++ +G + DT Sbjct: 418 WELIYQAADRGITVFVTTHYMDEA-EYCNRISIMVDGQIKALDT 460 Lambda K H 0.321 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 251 Number of extensions: 15 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 237 Length of database: 489 Length adjustment: 28 Effective length of query: 209 Effective length of database: 461 Effective search space: 96349 Effective search space used: 96349 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory