Align Proton myo-inositol cotransporter; H(+)-myo-inositol cotransporter; Hmit; H(+)-myo-inositol symporter; Solute carrier family 2 member 13 (characterized)
to candidate 350322 BT0794 D-xylose-proton symporter (D-xylose transporter) (NCBI ptt file)
Query= SwissProt::Q921A2 (637 letters) >lcl|FitnessBrowser__Btheta:350322 BT0794 D-xylose-proton symporter (D-xylose transporter) (NCBI ptt file) Length = 484 Score = 147 bits (372), Expect = 8e-40 Identities = 113/373 (30%), Positives = 180/373 (48%), Gaps = 56/373 (15%) Query: 69 FVYAAAAFSALGGFLFGYDTGVVSGAMLLLRRQMRLGAMWQELLVSGAV--GAAAVAALA 126 ++Y+ + + LGG LFGYDT V+SGA L + +Q V + +A + + Sbjct: 12 YLYSITSVAILGGLLFGYDTAVISGAEKGLEAFFLSASDFQYNKVMHGITSSSALIGCVL 71 Query: 127 GGALNGA----LGRRSAILLA------SALCTVGSAVLA---AAANKETLLAG---RLVV 170 GGAL+G LGRR+++ LA SAL + VL N + L+A R++ Sbjct: 72 GGALSGVFASRLGRRNSLRLAAVLFFLSALGSYYPEVLFFEYGKPNMDLLIAFNLYRVLG 131 Query: 171 GLGIGIASMTVPVYIAEVSPPNLRGRLVTINTLFITGGQFFASVVD-------------- 216 G+G+G+AS P+YIAE++P N+RG LV+ N I G V+ Sbjct: 132 GIGVGLASAVCPMYIAEIAPSNIRGTLVSCNQFAIIFGMLVVYFVNYLIMGDHQNPIILK 191 Query: 217 ---GAFS-------YLQKDGWRYMLGLAAIPAVIQFLGFLFLPESPRWLIQKGQTQKARR 266 G S + ++GWRYM G A PA L F+P++PR+L+ Q +KA Sbjct: 192 DAAGVLSVSAESDMWTVQEGWRYMFGSEAFPAAFFGLLLFFVPKTPRYLVLVQQEEKAYT 251 Query: 267 ILSQMRGNQTIDEEYDSIRNSIEEEEKEASAAGPIICRMLSYPPTRRALAVGCGLQMFQQ 326 IL ++ G + E + I+ + +E+ + ++ +Y T + +G L +FQQ Sbjct: 252 ILEKINGKKKAQEILNDIKATAQEKTE----------KLFTYGVT--VIVIGILLSVFQQ 299 Query: 327 LSGINTIMYYSATILQMSGVEDDRLAIWLASITAFTNFIFTLVGVWLVEKVGRRKLTFGS 386 GIN ++YY+ I + +G E + I N IFTLV ++ V++ GR+ L Sbjct: 300 AIGINAVLYYAPRIFENAGAEGG--GMMQTVIMGIVNIIFTLVAIFTVDRFGRKPLLIIG 357 Query: 387 LAGTTVALTILAL 399 G V +A+ Sbjct: 358 SIGMAVGAFAVAM 370 Score = 67.8 bits (164), Expect = 1e-15 Identities = 34/100 (34%), Positives = 54/100 (54%), Gaps = 1/100 (1%) Query: 499 LVGLVLYLVFFAPGMGPMPWTVNSEIYPLWARSTGNACSAGINWIFNVLVSLTFLHTAEY 558 ++ +++Y FF GP+ W + SEI+P R A + WIFN +VS TF ++ Sbjct: 382 VLSIIVYAAFFMMSWGPICWVLISEIFPNTIRGKAVAIAVAFQWIFNYIVSSTFPALYDF 441 Query: 559 LTYYGAFFLYAGFAAVGLLFVYGCLPETKGKKLEEIESLF 598 + A+ LY +FV+ +PETKGK LE++ L+ Sbjct: 442 SPMF-AYSLYGIICVAAAIFVWRWVPETKGKTLEDMSKLW 480 Lambda K H 0.322 0.136 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 594 Number of extensions: 26 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 637 Length of database: 484 Length adjustment: 36 Effective length of query: 601 Effective length of database: 448 Effective search space: 269248 Effective search space used: 269248 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory