GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Bacteroides thetaiotaomicron VPI-5482

Align glycine betaine/l-proline transport atp-binding protein prov (characterized)
to candidate 351279 BT1751 Glycine betaine transport ATP-binding protein (NCBI ptt file)

Query= CharProtDB::CH_001555
         (400 letters)



>FitnessBrowser__Btheta:351279
          Length = 408

 Score =  364 bits (935), Expect = e-105
 Identities = 189/399 (47%), Positives = 281/399 (70%), Gaps = 6/399 (1%)

Query: 4   KLEIKNLYKIFGEHPQRAFKYIEQGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGLS 63
           K+EIK+LY +FG   Q+A K +++G +K +IL+ TG ++ VKDA+L+I EGEIFVIMGLS
Sbjct: 3   KIEIKDLYLVFGNEKQKALKMLKEGKTKSEILKATGCTVAVKDANLSINEGEIFVIMGLS 62

Query: 64  GSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMTV 123
           GSGKST++R +NRLI PT G+V+I+G DIAK+SD EL ++RRK++AMVFQ+F L+PH +V
Sbjct: 63  GSGKSTLLRCINRLIRPTSGEVIINGTDIAKVSDKELLQIRRKELAMVFQNFGLLPHRSV 122

Query: 124 LDNTAFGMELAGINAEERREKALDALRQVGLENYAHSYPDELSGGMRQRVGLARALAINP 183
           L N AFG+EL G+   ER +KA+++++ VGL+ Y +    ELSGGM+QRVGLARALA NP
Sbjct: 123 LHNIAFGLELQGVKKGEREQKAMESMQLVGLKGYENQMVSELSGGMQQRVGLARALANNP 182

Query: 184 DILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGEV 243
           ++LLMDEAFSALDPLIR +MQDEL+ LQ+K ++TIVFI+HDL EA+++GDRIAIM++GE+
Sbjct: 183 EVLLMDEAFSALDPLIRVQMQDELLTLQSKMKKTIVFITHDLSEAIKLGDRIAIMKDGEI 242

Query: 244 VQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRTPNGLIRKTPGFGPRSALKLL 303
           VQ+GT +EIL  PAN YV  F   VD S++ +A  +    P  ++ +    GP   ++ +
Sbjct: 243 VQIGTSEEILTEPANAYVERFVENVDRSKIITASSVMVDKP--IVARLKKEGPEVLIRKM 300

Query: 304 QDEDREYGYVIERGNKFVGAVSI-DSLKTALTQQQGLDAALIDAPLAVDAQTPLSELLSH 362
           ++ +     V++  N  VG V + D LK    Q + +++ +     +V   T L ++L  
Sbjct: 301 RERNLTVLPVVDSNNLLVGEVRLNDLLKLRKEQIRSIESVVRHEVHSVLGDTVLEDILPL 360

Query: 363 VGQAPCAVPVVDEDQQYVGIISKGMLL---RALDREGVN 398
           + +    + VV+E++++ G++    L+      D+E +N
Sbjct: 361 MTKTNSPIWVVNENREFEGVVPLSSLIIEVTGKDKEEIN 399


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 425
Number of extensions: 17
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 408
Length adjustment: 31
Effective length of query: 369
Effective length of database: 377
Effective search space:   139113
Effective search space used:   139113
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory