Align L-lactate permease (characterized, see rationale)
to candidate 350981 BT1453 L-lactate permease (NCBI ptt file)
Query= uniprot:Q8EIL2 (545 letters) >FitnessBrowser__Btheta:350981 Length = 499 Score = 267 bits (683), Expect = 6e-76 Identities = 162/520 (31%), Positives = 283/520 (54%), Gaps = 26/520 (5%) Query: 15 LTAIVALLPIVFFFLALTVLKLKGHIAGALTLLIALAVAIITYKMPVSIALASAIYGFSY 74 +T I+A++P++ + + K+ G + ++L++ + +A+ + V S +YG Sbjct: 1 MTLILAIIPVLLLIVLMAFFKMSGDKSSIISLIVTMLIALFGFAFSVDNLFYSFLYGALK 60 Query: 75 GLWPIAWIIITAVFLYKITVKTGQFEIIRSSVISVTEDQRLQMLLVGFSFGAFLEGAAGF 134 + PI II+ A+F Y + +KT + EII+ S++ D+ +Q+LL+ + FG LE AGF Sbjct: 61 AVSPILIIILMAIFSYNVLLKTEKMEIIKQQFASISTDKSIQVLLLTWGFGGLLEAMAGF 120 Query: 135 GAPVAITAALLVGLGFNPLYAAGLCLIANTAPVAFGAMGIPIIVAGQVSSLDPFHIGQLA 194 G VAI AA+L+ LGF P+++A + LIAN+ AFGA+G P++V + ++LD + Sbjct: 121 GTAVAIPAAILISLGFKPIFSATVSLIANSVATAFGAIGTPVLVLAKETNLDVLQLSTNV 180 Query: 195 GRQLPILSIIVPFWLIAMMD-GIRGI-RQTWPATLVAGVSFAVTQFLTSNFIGPELPDIT 252 QL +L ++P L+ + + ++ + + + A LV GVS V Q+L + ++G E P I Sbjct: 181 VLQLSVLMFLIPLVLLFLTNPKLKALPKNIFLALLVGGVSL-VGQYLAARYMGAESPAII 239 Query: 253 SALVSLICLTLFLKVWQPKEIFTFSGMKQRAVTPKSTFSNGQIFKAWSPFIILTAIVTLW 312 +++S+I + L+ K+ KE K R KST I AWS ++++ ++ L Sbjct: 240 GSILSIIVIVLYGKLTASKE------EKAR----KSTLKTKDILNAWSIYLLILFLIILT 289 Query: 313 SIKDVQLALSFATISIEVPYLHNLVIKTAPIVAKETPYAAIYKLNLLGAVGTAILIAAMI 372 S L + +N V + + V T Y ++ L G + + I Sbjct: 290 SPLFPSLRSTLE---------NNWVTRISLPVNATT---VNYTISWLTHAGVLLFLGTFI 337 Query: 373 SIVVLKMSISNALTSFKDTLIELRFPILSIGLVLAFAFVANYSGLSSTLALVLA-GTGVA 431 ++ + +T+ +L+ +++ ++ + + + SG+ + +A LA TG Sbjct: 338 GGLIQGAKVKELFIVLWNTVKQLKKTFITVICLVGLSTIMDTSGMIAVIATALATATGSL 397 Query: 432 FPFFSPFLGWLGVFLTGSDTSSNALFGALQANTANQIGVTPELLVAANTTGGVTGKMISP 491 +P F+P +G LG F+TGSDTSSN LFG LQA+ A QI V+P+ L AANT G GK+ISP Sbjct: 398 YPLFAPVIGCLGTFITGSDTSSNILFGKLQASVAGQIHVSPDWLSAANTVGATGGKIISP 457 Query: 492 QSIAVACAATGLAGKESDLFRFTLKHSLFFCTFIGVLTVL 531 QSIA+A +A GKE ++ + + ++L + G++ + Sbjct: 458 QSIAIATSAGNQQGKEGEILKAAIPYALAYVVITGIIVYI 497 Lambda K H 0.327 0.140 0.419 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 727 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 545 Length of database: 499 Length adjustment: 35 Effective length of query: 510 Effective length of database: 464 Effective search space: 236640 Effective search space used: 236640 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory