Align propionyl-CoA carboxylase α subunit (EC 6.4.1.3) (characterized)
to candidate 351443 BT1915 pyruvate carboxylase subunit A (NCBI ptt file)
Query= metacyc::MONOMER-13589 (666 letters) >lcl|FitnessBrowser__Btheta:351443 BT1915 pyruvate carboxylase subunit A (NCBI ptt file) Length = 503 Score = 471 bits (1211), Expect = e-137 Identities = 240/490 (48%), Positives = 328/490 (66%), Gaps = 5/490 (1%) Query: 1 MFKKILIANRGEIACRVIKTARKMGIQTVAVYSDADRNALHVSMADEAIHIGPPPANQSY 60 M KKIL+ANRGEIA RV+++ R+M I ++A++S+ADR A HV ADEA +GP + +SY Sbjct: 1 MIKKILVANRGEIAIRVMRSCREMEITSIAIFSEADRTAKHVLYADEAYCVGPAASKESY 60 Query: 61 IVIDKIMEAIKASGAEAVHPGYGFLSERMDFAAALEAAGVVFIGPPSGAIEAMGDKITSK 120 + I+KI+E K A+A+HPGYGFLSE FA + ++FIGP +EAMGDKI+++ Sbjct: 61 LNIEKIIEVAKECHADAIHPGYGFLSENATFARRCQEENIIFIGPDPETMEAMGDKISAR 120 Query: 121 KLAKEAGVSTVPGYMGLIADADEAVKISNEIGYPVMIKASAGGGGKGMRIAWSEAEVKEG 180 EAGV VPG + +EAV++ N+IGYPVM+KAS GGGGKGMR+ S EV+E Sbjct: 121 IKMIEAGVPVVPGTQENLKSVEEAVELCNKIGYPVMLKASMGGGGKGMRLIHSAEEVEEA 180 Query: 181 FESSKNEAANSFGDDRIFIEKFVTQPRHIEIQVLADKHGNCVYLHERECSIQRRNQKVIE 240 + ++K+E+ +SFGDD +++EKFV +P HIE Q+L DKHGN ++L ERECS+QRRNQK++E Sbjct: 181 YTTAKSESLSSFGDDTVYLEKFVEEPHHIEFQILGDKHGNVIHLCERECSVQRRNQKIVE 240 Query: 241 EAPSPFLDEATRKAMGEQACALAKAVGYASAGTVEFIVDGQKNFYFLEMNTRLQVEHPVT 300 E PS F+ RK MGE+A A AKAV Y AGT+EF+VD +N+YFLEMNTRLQVEHP+T Sbjct: 241 ETPSVFVTPELRKDMGEKAVAAAKAVNYIGAGTIEFLVDKHRNYYFLEMNTRLQVEHPIT 300 Query: 301 ELITGIDLVEQMIRVAAGEKLPFQQSDLKINGWAMESRLYAEDPYRNFLPSIGRLTRYRP 360 E + G+DLV++ I+VA G+ L +Q D++ G A+E R+ AED NF+PS G + + Sbjct: 301 EEVVGVDLVKEQIKVADGQVLQLKQKDIQQRGHAIECRICAEDTEMNFMPSPGIIKQITE 360 Query: 361 PVESVTPTSVVRNDTGVYEGGEISMYYDPMIAKLCTWAPTREAAIEEMRLALDTFEVEGI 420 P VR D+ VYEG EI +YYDPMI KL WA RE AIE MR L +++ G+ Sbjct: 361 P-----NGIGVRIDSYVYEGYEIPIYYDPMIGKLIVWATNREYAIERMRRVLHEYKLTGV 415 Query: 421 GHNLPFVGAVMDHPRFVKGDITTAFIAEEYPDGFQGAVLDEPTLRRVAAAAAAMNRVAEI 480 +N+ ++ A+MD P FV+G T FI + Q + +A AA M+ + + Sbjct: 416 KNNISYLRAIMDTPDFVEGHYDTGFITKNGEHLQQCIMRTSERAENIAMIAAYMDYLMNL 475 Query: 481 RRTRISGTMN 490 R T N Sbjct: 476 EENRGDATDN 485 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 815 Number of extensions: 33 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 666 Length of database: 503 Length adjustment: 36 Effective length of query: 630 Effective length of database: 467 Effective search space: 294210 Effective search space used: 294210 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory