Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate H281DRAFT_03256 H281DRAFT_03256 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase
Query= SwissProt::Q9H2A2 (487 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_03256 H281DRAFT_03256 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase Length = 485 Score = 406 bits (1044), Expect = e-118 Identities = 207/486 (42%), Positives = 306/486 (62%), Gaps = 21/486 (4%) Query: 8 LMLENFIDGKFLPCSSYIDSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPSWSSRSPQ 67 + +E+ I+GK Y ++ +P+T EV V + E++AAV+AA+EAFP+W+ + Sbjct: 1 MRIEHLINGKAGGAKDYFETVNPATQEVLAEVARGTEAEVDAAVRAAKEAFPAWAGKPAA 60 Query: 68 ERSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFASSSLHHTSE 127 ER++++ ++ +L+ +++ E ++ E+KD G+T++ R +PR+ NF +FA Sbjct: 61 ERAKLIRKLGELIAKNVPEISETETKDTGQTISQTRKQLVPRAADNFSYFAEM------- 113 Query: 128 CTQMD--------HLGCMHYTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVIAKP 179 CT++D HL +YT+ PVGV LISPWN+P TWK+AP +A GNT + K Sbjct: 114 CTRVDGHTYPTDTHL---NYTLFHPVGVCALISPWNVPFMTATWKVAPCLAFGNTAVLKM 170 Query: 180 SELTSVTAWMLCKLLDKAGVPPGVVNIVFGTGPRVGEALVSHPEVPLISFTGSQPTAERI 239 SEL+ +TA ML L +AG+P GV+N+V G G GE LV+HP+V +SFTGS T RI Sbjct: 171 SELSPLTASMLGNLALEAGIPAGVLNVVHGFGKETGEPLVAHPDVHAVSFTGSTATGNRI 230 Query: 240 TQLSAPHCKKLSLELGGKNPAIIFEDANLDECIPATVRSSFANQGEICLCTSRIFVQKSI 299 Q + KK S+ELGGK+P +IF+DA+ + + A V F+N GE C SRI VQKSI Sbjct: 231 VQSAG--LKKYSMELGGKSPFVIFDDADFERALDAAVFMIFSNNGERCTAGSRILVQKSI 288 Query: 300 YSEFLKRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCGEGVD 359 Y++F +RF+E ++ VG P IG +IS+ HL KVRSY++ EGA + CG G+D Sbjct: 289 YAKFAERFIERAKRLTVGDPLADSTIIGPMISQGHLAKVRSYIELGPKEGATLACG-GLD 347 Query: 360 KLSLPARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNVKYGL 419 LP + G F++PTV D+ + EEIFGPV C++PFD E + I AN++ YGL Sbjct: 348 MPGLPDSMRHGNFVMPTVFVDVDNRMRIAQEEIFGPVACLIPFDDEADAIRLANDISYGL 407 Query: 420 AATVWSSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYDFFTE 479 ++ +W+ N GR HRVA +++G+ + N +R+L PFGG K+SG+GREG SY+ F E Sbjct: 408 SSYIWTENTGRAHRVAASVEAGMCFVNSQNVRDLRQPFGGTKASGVGREGGTWSYEVFLE 467 Query: 480 IKTITV 485 K + V Sbjct: 468 PKNVCV 473 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 596 Number of extensions: 15 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 485 Length adjustment: 34 Effective length of query: 453 Effective length of database: 451 Effective search space: 204303 Effective search space used: 204303 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory