Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate H281DRAFT_03540 H281DRAFT_03540 succinate semialdehyde dehydrogenase (EC 1.2.1.16)
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__Burk376:H281DRAFT_03540 Length = 479 Score = 621 bits (1602), Expect = 0.0 Identities = 299/477 (62%), Positives = 373/477 (78%), Gaps = 2/477 (0%) Query: 7 KLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKALPAWRA 66 + R Y+ G W + T V NPATGE+I V K GA E +AI AA++A PAWR+ Sbjct: 3 EFLRTGHYIGGEWYEG--ASTYPVLNPATGEVIAQVAKGGAVEATQAIAAAERAFPAWRS 60 Query: 67 LTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFGEEAKRI 126 LTAKER+ +++RW +LM+E++D LA L+T EQGKPLAEA+GE+ YAASF EWF EEAKR Sbjct: 61 LTAKERSARVKRWGELMLEHRDALAALLTREQGKPLAEARGEVGYAASFFEWFAEEAKRA 120 Query: 127 YGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLKPASQTP 186 YGD IP P+ +IIV ++P+GV AAITPWNFP AMITRKAGPALAAGCTMVLKP+ +TP Sbjct: 121 YGDVIPSPNPNAKIIVTREPVGVVAAITPWNFPLAMITRKAGPALAAGCTMVLKPSEETP 180 Query: 187 YSALALAELAERAGIPKGVFSVVTGSAGEVGGELTSNPIVRKLTFTGSTEIGRQLMAECA 246 SALALA LAE+AGIP GVF+VV+G A +GG LT + +VRKL+FTGST +G+ L + A Sbjct: 181 LSALALAVLAEKAGIPPGVFNVVSGDAVAIGGALTESDVVRKLSFTGSTRVGKLLAKQSA 240 Query: 247 QDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQDGVYDAFV 306 +KK+SLELGGNAPFIVFDDADLDAAV+GA+ SK+RN GQTCVC NR YVQDG+YDAF Sbjct: 241 DTLKKLSLELGGNAPFIVFDDADLDAAVQGAMASKFRNTGQTCVCVNRFYVQDGIYDAFT 300 Query: 307 DKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGKPHALGGT 366 L A K+ +GN L+ V GPLI+ A+ KVE H+ADA+ KGAKV++G KPHALGGT Sbjct: 301 LALAQAARKMRVGNALQGDVEQGPLINQAALTKVEAHVADALQKGAKVLTGAKPHALGGT 360 Query: 367 FFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFYARDLARV 426 F+EPT+LVD + L++++ETFGP+A FRFK E E +A +N T FGL++YFY RDLAR Sbjct: 361 FYEPTVLVDASSSMLIAQEETFGPVAACFRFKTEDEAVAAANATPFGLSAYFYTRDLARA 420 Query: 427 FRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLGGI 483 +RV E LE GMVGIN G++S EVAPFGG+K SGLGREGSKYG+++Y E+KY+ +GG+ Sbjct: 421 WRVGEALESGMVGINEGILSTEVAPFGGVKQSGLGREGSKYGLDEYTELKYMMMGGL 477 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 655 Number of extensions: 12 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 479 Length adjustment: 34 Effective length of query: 449 Effective length of database: 445 Effective search space: 199805 Effective search space used: 199805 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory