Align NAD(P)-dependent succinate-semialdehyde dehydrogenase (EC 1.2.1.16) (characterized)
to candidate H281DRAFT_02680 H281DRAFT_02680 succinate semialdehyde dehydrogenase
Query= metacyc::MONOMER-15736 (480 letters) >FitnessBrowser__Burk376:H281DRAFT_02680 Length = 492 Score = 659 bits (1700), Expect = 0.0 Identities = 326/480 (67%), Positives = 380/480 (79%), Gaps = 2/480 (0%) Query: 2 QLKDAQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKAL 61 +L D L R A+IDG W AD+ +T V++PATGE + VP M AETRRAIEA + A Sbjct: 11 RLADPSLLRTLAYIDGQWCGADDARTFAVDDPATGEKIADVPLMTGAETRRAIEAGEHAQ 70 Query: 62 PAWRALTAKERATKLRRWYELLIENQDDLGRLMTLEQGKPLAEAKGEIAYAASFIEWFAE 121 WR LTA +R+T L+RW+ L+I N DDL +M+ EQGKPLAEAKGEI YAASFIEWFAE Sbjct: 71 RGWRKLTAAQRSTILKRWHALMIANTDDLAIIMSAEQGKPLAEAKGEIGYAASFIEWFAE 130 Query: 122 EAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIKP 181 +AKR+ GDV+ DKR++V K+PIGV AAITPWNFPAAMITRK PALAAGC M++KP Sbjct: 131 QAKRVDGDVLASPAADKRMLVTKEPIGVCAAITPWNFPAAMITRKVAPALAAGCAMILKP 190 Query: 182 ASQTPFSALALVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQL 241 A TP SALAL ELAHRAG+P GV SVV G IG E+TSNPIVRKLSFTGST +GR L Sbjct: 191 AEATPLSALALAELAHRAGVPAGVFSVVVGDPRSIGAEMTSNPIVRKLSFTGSTPVGRML 250 Query: 242 MAECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDSV 301 M++CA +KK+SLELGGNAPFIVFDDADLD AVEGA+ SKYRN GQTCVC NR+Y+QD V Sbjct: 251 MSQCAPTVKKLSLELGGNAPFIVFDDADLDAAVEGALASKYRNAGQTCVCTNRVYVQDGV 310 Query: 302 YDAFAEKLKAAVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGKSM 361 YDAFAEK AAV ++K+GNG E G T GPLI+E AV KV+ HIADA+ GA +L GGK Sbjct: 311 YDAFAEKFAAAVGRIKVGNGFESGVTQGPLINEAAVEKVEAHIADAVAHGARVLTGGKRH 370 Query: 362 EGN--FFEPTILVNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYAR 419 FFEPT++ +V A EETFGP+APLFRF +E E IA +N TEFGLA+YFY+R Sbjct: 371 AAGKLFFEPTVVGDVTARMRFATEETFGPVAPLFRFTNEREAIAAANATEFGLAAYFYSR 430 Query: 420 DLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLG 479 D+GR++RVAEALEYGMVG+NTGLISNEVAPFGG+K SGLGREGSKYGIEDYLEIKYLC+G Sbjct: 431 DIGRIWRVAEALEYGMVGINTGLISNEVAPFGGVKQSGLGREGSKYGIEDYLEIKYLCMG 490 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 13 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 492 Length adjustment: 34 Effective length of query: 446 Effective length of database: 458 Effective search space: 204268 Effective search space used: 204268 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory