Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate H281DRAFT_03178 H281DRAFT_03178 succinate semialdehyde dehydrogenase
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__Burk376:H281DRAFT_03178 Length = 486 Score = 697 bits (1798), Expect = 0.0 Identities = 341/483 (70%), Positives = 399/483 (82%) Query: 1 MQLKDAKLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKA 60 + LKD L + AY+ G W AD+G T +V NPATGE++ +VP+MG AETRRAI+AA+ A Sbjct: 4 LTLKDPALLKSHAYLAGEWQGADDGSTFEVVNPATGEVVATVPRMGTAETRRAIDAANAA 63 Query: 61 LPAWRALTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFG 120 PAWRA TAK+RA LR+W DLM+EN DDLA ++T EQGKPLAEAKGEI YAASFLEWF Sbjct: 64 WPAWRASTAKQRAVILRKWHDLMLENADDLALILTTEQGKPLAEAKGEIQYAASFLEWFA 123 Query: 121 EEAKRIYGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLK 180 EE KR+ GDTIP DKRI+V K+P+GV AAITPWNFP+AMITRK GPALAAGC +++K Sbjct: 124 EEGKRLNGDTIPTPANDKRIVVTKEPVGVCAAITPWNFPAAMITRKVGPALAAGCPIIVK 183 Query: 181 PASQTPYSALALAELAERAGIPKGVFSVVTGSAGEVGGELTSNPIVRKLTFTGSTEIGRQ 240 PA TP SALALA LAERAG+P+GVF+VVTG +G E+T NPIVRKL+FTGST +GR Sbjct: 184 PAEATPLSALALAVLAERAGVPRGVFNVVTGEPKAIGAEMTGNPIVRKLSFTGSTPVGRL 243 Query: 241 LMAECAQDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQDG 300 LMA+CA +KKVSLELGGNAPFIVFDDADLDAAV GA+ SKYRN+GQTCVC NR YV D Sbjct: 244 LMAQCAPTVKKVSLELGGNAPFIVFDDADLDAAVAGAIASKYRNSGQTCVCTNRFYVHDK 303 Query: 301 VYDAFVDKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGKP 360 VYDAF KL+AAV +L +G G EAGVT GPLI+ AV KVE HI DA++KGA+VV+GGK Sbjct: 304 VYDAFAAKLRAAVEQLTVGRGTEAGVTQGPLINEAAVLKVESHIEDALAKGARVVTGGKR 363 Query: 361 HALGGTFFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFYA 420 HALG FFEPTIL DV + V++DETFGPLAP+FRF + EVIA++NDTEFGLASYFY+ Sbjct: 364 HALGHGFFEPTILADVTPDMKVARDETFGPLAPLFRFSSDEEVIALANDTEFGLASYFYS 423 Query: 421 RDLARVFRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 480 RD+ RV+RVAE LEYGMVGINTGLISNEVAPFGG+K SGLGREGS YGI+DY+ IKY+C+ Sbjct: 424 RDIGRVWRVAEALEYGMVGINTGLISNEVAPFGGVKQSGLGREGSHYGIDDYVVIKYMCV 483 Query: 481 GGI 483 GGI Sbjct: 484 GGI 486 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 739 Number of extensions: 12 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 486 Length adjustment: 34 Effective length of query: 449 Effective length of database: 452 Effective search space: 202948 Effective search space used: 202948 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory