Align glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate H281DRAFT_06351 H281DRAFT_06351 succinate semialdehyde dehydrogenase (EC 1.2.1.16)
Query= BRENDA::Q88RC0 (480 letters) >FitnessBrowser__Burk376:H281DRAFT_06351 Length = 491 Score = 541 bits (1395), Expect = e-158 Identities = 266/477 (55%), Positives = 342/477 (71%), Gaps = 6/477 (1%) Query: 7 QLFRQQAYINGEWLDADNGQTIKVTNPATGEVIGTVPKMGTAETRRAIEAADKALPAWRA 66 +L R +I G+W+ A NG VTNPATG+ I V A+ R A +AA ALPAWR Sbjct: 9 ELIRPLNFIGGKWIAAANGARFPVTNPATGDTIVEVANSSAADARAATDAAASALPAWRG 68 Query: 67 LTAKERSAKLRRWFELMIENQDDLARLMTTEQGKPLAEAKGEIAYAASFIEWFAEEAKRI 126 +ER+ LRRW L++EN +DLA+LM+TEQGKPLAE++GE+AY AS++ WFA+EA RI Sbjct: 69 KLPRERAEILRRWHALIVENTEDLAKLMSTEQGKPLAESRGEVAYGASYVAWFADEATRI 128 Query: 127 YGDTIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTP 186 YGD IP Q KR+ +K+ IG+ AAITPWNFP AMI RK PALAAGCT+V KPA TP Sbjct: 129 YGDIIPQQQRGKRMSAVKEAIGIVAAITPWNFPLAMIARKIAPALAAGCTVVAKPAEDTP 188 Query: 187 YSALALVELAHRAGIPAGVLSVVTGSAG---EVGGELTGNSLVRKLSFTGSTEIGRQLME 243 +ALAL LA AG+P GVL++++ S E + ++ VRK++FTGST +G+ L Sbjct: 189 LTALALAALAQEAGVPDGVLNMLSASRDQGIEAVADWLADARVRKITFTGSTPVGKHLAR 248 Query: 244 ECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRIYVQDGVYD 303 E A +KK+SLELGGNAPFIVFDDADLD AV G + +K+RN GQTCVC NR+YVQ GVY+ Sbjct: 249 ESAATLKKLSLELGGNAPFIVFDDADLDAAVTGLMAAKFRNGGQTCVCPNRVYVQAGVYE 308 Query: 304 AFAEKLAAAVAKLKIGNGLEEGTTTGPLIDGKAVAKVQEHIEDAVSKGAKVLSGGKLIE- 362 FA+ LA VA LK+ + GP+I+ +A+ K+ H+EDAV +GAKVL+GGK + Sbjct: 309 RFADLLAKRVAALKVAPATDPSAQIGPMINERAIDKIARHVEDAVKQGAKVLTGGKRLTE 368 Query: 363 --GNFFEPTILVDVPKTAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYARD 420 N++ PT+L D V EETFGP+APLFRF DEAE + ++NDT FGLA+YF+ +D Sbjct: 369 LGPNYYAPTVLTDANDGMLVCCEETFGPVAPLFRFSDEAEAVRLANDTPFGLAAYFFTQD 428 Query: 421 MSRVFRVAEALEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLC 477 + R+ RVA LE G++GIN G +S+EVAPFGG+K SG GREGSKYG++DYL IKYLC Sbjct: 429 VRRIDRVATRLEAGVIGINEGAVSSEVAPFGGVKESGYGREGSKYGLDDYLSIKYLC 485 Lambda K H 0.317 0.134 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 646 Number of extensions: 16 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 491 Length adjustment: 34 Effective length of query: 446 Effective length of database: 457 Effective search space: 203822 Effective search space used: 203822 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory