Align putrescine-pyruvate transaminase (EC 2.6.1.113) (characterized)
to candidate H281DRAFT_01082 H281DRAFT_01082 putrescine aminotransferase
Query= BRENDA::Q9I6J2 (456 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_01082 H281DRAFT_01082 putrescine aminotransferase Length = 478 Score = 547 bits (1409), Expect = e-160 Identities = 259/445 (58%), Positives = 332/445 (74%), Gaps = 3/445 (0%) Query: 10 TREWQALSRDHHLPPFTDYKQLNEKGARIITKAEGVYIWDSEGNKILDAMAGLWCVNVGY 69 T E++AL HH+ PF+D +LN G+R+I +A GVY+WDSEGNKI+D MAGLWCVNVGY Sbjct: 28 TAEYRALDAAHHIHPFSDMGELNRSGSRVIVRAHGVYLWDSEGNKIIDGMAGLWCVNVGY 87 Query: 70 GREELVQAATRQMRELPFYNLFFQTAHPPVVELAKAIADVAPEGMNHVFFTGSGSEANDT 129 GR+EL AA RQM ELP+YN FF+T HPPV+EL+ +A++APE NH F+ SGSEANDT Sbjct: 88 GRKELANAAYRQMEELPYYNTFFKTTHPPVIELSALLAELAPEPFNHFFYCNSGSEANDT 147 Query: 130 VLRMVRHYWATKGQPQKKVVIGRWNGYHGSTVAGVSLGGMKALHEQGDFPIPGIVHIAQP 189 VLR+V YW T+G+ KKVVI R NGYHGST+AG +LGGM +HEQ + IVHI QP Sbjct: 148 VLRIVHRYWTTQGKHSKKVVISRRNGYHGSTIAGGTLGGMGYMHEQMPSKVENIVHIDQP 207 Query: 190 YWYGE-GGDMSPDEFGVWAAEQLEKKILEVGEENVAAFIAEPIQGAGGVIVPPDTYWPKI 248 Y++ E +P+EF + A+QLE KILE+G NVAAFI EP QGAGGVI P TYWP+I Sbjct: 208 YFFAEANSSQTPEEFALARAQQLEMKILEIGAHNVAAFIGEPFQGAGGVIFPASTYWPEI 267 Query: 249 REILAKYDILFIADEVICGFGRTGEWFGSQYYGNAPDLMPIAKGLTSGYIPMGGVVVRDE 308 I KYD+L +ADEVI GFGRTGEWF Q++G PDL+ +AKGLTSGY+PMG V + D Sbjct: 268 ERICRKYDVLLVADEVIGGFGRTGEWFAHQHFGFQPDLITMAKGLTSGYVPMGAVGLNDR 327 Query: 309 IVEVLNQGGEFYHGFTYSGHPVAAAVALENIRILREEKIIEKVKAETAPYLQKRWQE-LA 367 I + + + GEF HG TYSGHPVAAAVA+ N+++LR+EKI+E+VK +T PY QK+ ++ A Sbjct: 328 IAKAIIENGEFNHGLTYSGHPVAAAVAVANLKLLRDEKIVERVKTDTGPYFQKKLRDTFA 387 Query: 368 DHPLVGEARGVGMVAALELVKNKKTRERFTDKG-VGMLCREHCFRNGLIMRAVGDTMIIS 426 HP+VGE G G+VA L+L + +R+RF + G VG +CR+ CF LIMRA GD M++S Sbjct: 388 RHPIVGEIAGAGLVAGLQLAEEPASRKRFANGGDVGGVCRDFCFNGNLIMRASGDRMLLS 447 Query: 427 PPLVIDPSQIDELITLARKCLDQTA 451 PPLVI +ID+L++ A+ +D TA Sbjct: 448 PPLVISKQEIDDLVSKAKNAIDATA 472 Lambda K H 0.320 0.138 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 706 Number of extensions: 35 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 456 Length of database: 478 Length adjustment: 33 Effective length of query: 423 Effective length of database: 445 Effective search space: 188235 Effective search space used: 188235 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory