Align Purine/cytidine ABC transporter ATP-binding protein, component of General nucleoside uptake porter, NupABC/BmpA (transports all common nucleosides as well as 5-fluorocytidine, inosine, deoxyuridine and xanthosine) (Martinussen et al., 2010) (Most similar to 3.A.1.2.12). NupA is 506aas with two ABC (C) domains. NupB has 8 predicted TMSs, NupC has 9 or 10 predicted TMSs in a 4 + 1 (or 2) + 4 arrangement (characterized)
to candidate H281DRAFT_03380 H281DRAFT_03380 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= TCDB::A2RKA7 (506 letters) >FitnessBrowser__Burk376:H281DRAFT_03380 Length = 515 Score = 333 bits (854), Expect = 9e-96 Identities = 190/495 (38%), Positives = 292/495 (58%), Gaps = 8/495 (1%) Query: 2 ANETVIQMIDVTKRFGDFVANDKVNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEG 61 A ++Q+ V+KRF VA D ++L+L+ GE+HA+ GENGAGKSTLM I+SG +G Sbjct: 18 APREILQLKGVSKRFPGVVALDGIDLDLRSGEVHAVCGENGAGKSTLMKIISGQYHADDG 77 Query: 62 EVHVKGKLENIDSPSKAANLGIGMVHQHFMLVDAFTVTENIILGNEVTKGINLDLKTAKK 121 + +GK S S A GI ++HQ LV +V ENI L E +G +D +T Sbjct: 78 VICYEGKPVQFASTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKRGPFVDYRTLNA 137 Query: 122 KILELSERYGLSVEPDALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITEL 181 +R GL+V P L+ +S+ QQQ VEI K L A +LI DEPT+ LT +E +L Sbjct: 138 NAQRCLQRIGLNVSPTTLVGALSIAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQL 197 Query: 182 MQIMKNLIKEGKSIILITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGR 241 +I++ L +G +I+ I+H+LDE+ + DR+TV+R G+ I T + T E+ MVGR Sbjct: 198 FRIIRELRADGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTINEIVARMVGR 257 Query: 242 SVSFITEKAAAQP-KDVVLEIKDLNIKESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTE 300 ++ + P + V++ ++DL ++ G LS D+R GEI+G AG+ G G+TE Sbjct: 258 ALDDAYPPRESVPTEQVLMRVRDLQRTDTFGP-----LSFDLRKGEILGFAGLMGAGRTE 312 Query: 301 LVKAITGLTKVDSGSIKLHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIAL 360 + +AI G ++DSGSI+L + +T + PR+ + ++ EDR +DGL L M VA NI L Sbjct: 313 VARAIFGAERLDSGSIQLGDTPVTIRSPREAIRHGIAYLSEDRKKDGLALSMPVAANITL 372 Query: 361 QTYYKPPMSKYGFLDYNKINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDR 420 +S GFL +++ + A + E +R A +LSGGNQQK +I++ + R Sbjct: 373 SNV--RAISSRGFLRFSEETAIAERYVRELAIRTPTVKQIARNLSGGNQQKIVISKWLYR 430 Query: 421 NPDLLIVSQPTRGLDVGAIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQ 480 +L +PTRG+DVGA I+K + + +G V++IS EL E+L ++DRIAV H+G Sbjct: 431 GSRILFFDEPTRGIDVGAKYAIYKLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGL 490 Query: 481 IQGIVSPETTTKQEL 495 I ++ T+++E+ Sbjct: 491 ITAVLETRQTSQEEI 505 Score = 93.2 bits (230), Expect = 2e-23 Identities = 67/249 (26%), Positives = 123/249 (49%), Gaps = 9/249 (3%) Query: 258 VLEIKDLNIKESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELVKAITGLTKVDSGSIK 317 +L++K ++ K G + + G+ LD+R+GE+ V G +G G++ L+K I+G D G I Sbjct: 22 ILQLKGVS-KRFPGVVALDGIDLDLRSGEVHAVCGENGAGKSTLMKIISGQYHADDGVIC 80 Query: 318 LHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQTYYKPPMSKYGFLDYN 377 K + + + ++ + LV ++VAENI L K + F+DY Sbjct: 81 YEGKPVQFASTSDAQAAGIAIIHQELN---LVPHLSVAENIYLAREPK----RGPFVDYR 133 Query: 378 KINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNPDLLIVSQPTRGLDVG 437 +N++A+ ++ + +LS QQ IA+ + + +LI+ +PT L Sbjct: 134 TLNANAQRCLQRIGLN-VSPTTLVGALSIAQQQMVEIAKALSLDARVLIMDEPTSSLTES 192 Query: 438 AIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQGIVSPETTTKQELGI 497 + + + + R +G A+L IS LDE+ + DR+ V+ DG+ +TT E+ Sbjct: 193 ETVQLFRIIRELRADGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTINEIVA 252 Query: 498 LMVGGNINE 506 MVG +++ Sbjct: 253 RMVGRALDD 261 Score = 82.8 bits (203), Expect = 3e-20 Identities = 63/226 (27%), Positives = 106/226 (46%), Gaps = 10/226 (4%) Query: 25 VNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHVKGKLENIDSPSKAANLGIG 84 ++ +L+KGEI G GAG++ + + G G + + I SP +A GI Sbjct: 290 LSFDLRKGEILGFAGLMGAGRTEVARAIFGAERLDSGSIQLGDTPVTIRSPREAIRHGIA 349 Query: 85 MVHQHFM---LVDAFTVTENIILGNEVTKGINLDLKTAKKKILELSERY--GLSVEPDA- 138 + + L + V NI L N L+ +++ + +ERY L++ Sbjct: 350 YLSEDRKKDGLALSMPVAANITLSNVRAISSRGFLRFSEETAI--AERYVRELAIRTPTV 407 Query: 139 --LIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQIMKNLIKEGKSII 196 + R++S G QQ++ I K LYRG+ IL FDEPT + + ++M L +G ++ Sbjct: 408 KQIARNLSGGNQQKIVISKWLYRGSRILFFDEPTRGIDVGAKYAIYKLMDRLAADGVGVV 467 Query: 197 LITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGRS 242 LI+ +L E+ + DRI V G +E + +E+ GRS Sbjct: 468 LISSELPELLGMTDRIAVFHEGLITAVLETRQTSQEEILHYASGRS 513 Lambda K H 0.315 0.135 0.365 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 619 Number of extensions: 39 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 506 Length of database: 515 Length adjustment: 35 Effective length of query: 471 Effective length of database: 480 Effective search space: 226080 Effective search space used: 226080 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory