Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate H281DRAFT_02680 H281DRAFT_02680 succinate semialdehyde dehydrogenase
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__Burk376:H281DRAFT_02680 Length = 492 Score = 554 bits (1427), Expect = e-162 Identities = 276/480 (57%), Positives = 363/480 (75%), Gaps = 6/480 (1%) Query: 46 LLRGDSFVGGRWLPTP--ATFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWKEI 103 LLR +++ G+W TF V DPA+G K+ V E R A+ A A W+++ Sbjct: 17 LLRTLAYIDGQWCGADDARTFAVDDPATGEKIADVPLMTGAETRRAIEAGEHAQRGWRKL 76 Query: 104 SVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARRVY 163 + +RS++L++W+ LMI N D+LA I++AE GKPL EA+GEI Y+A F+EWF+E+A+RV Sbjct: 77 TAAQRSTILKRWHALMIANTDDLAIIMSAEQGKPLAEAKGEIGYAASFIEWFAEQAKRVD 136 Query: 164 GDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTPY 223 GD++ + A DKR LV K+P+GV + ITPWNFP+AMITRKV ALAAGC +++KPAE TP Sbjct: 137 GDVLASPAADKRMLVTKEPIGVCAAITPWNFPAAMITRKVAPALAAGCAMILKPAEATPL 196 Query: 224 SALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILLHH 283 SALALA+LA++AG+P GV++V+ + +G + ++P+V K+SFTGST G++L+ Sbjct: 197 SALALAELAHRAGVPAGVFSVVVGD---PRSIGAEMTSNPIVRKLSFTGSTPVGRMLMSQ 253 Query: 284 AANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIHDS 343 A +VK++S+ELGG APFIVFD A++D AV GA+ASK+RNAGQTCVC+NR VQ G++D+ Sbjct: 254 CAPTVKKLSLELGGNAPFIVFDDADLDAAVEGALASKYRNAGQTCVCTNRVYVQDGVYDA 313 Query: 344 FVTKFAEAMKKSLRVGNGFEEGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKRHQS 403 F KFA A+ + ++VGNGFE G TQGPLINE AVEKVE H+ DAVA GA V+TGGKRH + Sbjct: 314 FAEKFAAAVGR-IKVGNGFESGVTQGPLINEAAVEKVEAHIADAVAHGARVLTGGKRHAA 372 Query: 404 GGNFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYFYSQDP 463 G FFEPT++ +VT M TEETFGPVAP+ +F E EA+A ANA + GLA YFYS+D Sbjct: 373 GKLFFEPTVVGDVTARMRFATEETFGPVAPLFRFTNEREAIAAANATEFGLAAYFYSRDI 432 Query: 464 AQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYVCYGGL 523 +IWRVAE LE GMVG+N GLIS+ PFGGVKQSGLGREGSKYGI++YLE+KY+C GGL Sbjct: 433 GRIWRVAEALEYGMVGINTGLISNEVAPFGGVKQSGLGREGSKYGIEDYLEIKYLCMGGL 492 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 660 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 492 Length adjustment: 34 Effective length of query: 489 Effective length of database: 458 Effective search space: 223962 Effective search space used: 223962 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory