Align cytochrome c component of deoxyribose dehydrogenase (characterized)
to candidate H281DRAFT_05401 H281DRAFT_05401 Cytochrome c, mono- and diheme variants
Query= reanno::WCS417:GFF2133 (447 letters) >FitnessBrowser__Burk376:H281DRAFT_05401 Length = 431 Score = 439 bits (1128), Expect = e-127 Identities = 212/403 (52%), Positives = 264/403 (65%), Gaps = 6/403 (1%) Query: 41 AGATFEPALVSRGEYVARLSDCVACHSLAGKAPFAGGLEMATPLGAIHATNITPDKSTGI 100 A + + ALV RG Y+A+ DC ACH+ PFAGGL M TP+G I+ TNITPD TGI Sbjct: 28 AASAADQALVQRGAYLAKAGDCAACHTAPKGKPFAGGLPMNTPMGQIYTTNITPDAQTGI 87 Query: 101 GTYSLADFDRAVRHGVAPGGRRLYPAMPYPSYVKLSDDDIKALYAFFMQGIKPANQPNIP 160 G+Y+ DF RA+R GVA G LYPAMPYPSY K++D+D+KALYAFFM G+ P Q N Sbjct: 88 GSYTEQDFARAMREGVAKDGHNLYPAMPYPSYAKVNDEDMKALYAFFMSGVAPVQQANRE 147 Query: 161 SDIPWPLNMRWPIALWNGVFAPTATYAAKPDQDALWNRGAYIVQGPGHCGSCHTPRGLAF 220 SDI WP+NMRWP+ LWN VF Y KP +D WNRGAY++QG GHCGSCHTPRG+AF Sbjct: 148 SDIKWPMNMRWPLKLWNMVFLEKGVYQNKPGKDVAWNRGAYLIQGLGHCGSCHTPRGIAF 207 Query: 221 NEKALDEAGAPFLAGALLDGWYAPSLRQDPNTGLGRWSEPQIVQFLKTGRNAHAVVYGSM 280 EKALDE G+ FL G LLD WYA +L + N GLGRWS+ + FLKTG N HA +GSM Sbjct: 208 QEKALDETGSAFLTGGLLDNWYATNLTGEHNVGLGRWSDQDLQAFLKTGANRHASAFGSM 267 Query: 281 TEAFNNSTQFMQDDDLAAIARYLKSLPGDPQRDGAPWQY--QAVAAVQDAP----GAHTY 334 T NNSTQ + D D+AA+ YLKSLP P++Y Q + P GA Y Sbjct: 268 TSVINNSTQNLNDGDIAAMTTYLKSLPAVGGNGAPPYKYDPQTTKVSLNRPANDAGARVY 327 Query: 335 ATRCASCHGLDGKGQPEWMPPLAGATSALAKESASAINITLNGSQRVVASGVPDAYRMPA 394 C CHG+DG+G + PLAG + L K+++S IN+TLNG++ +V G+P Y MP Sbjct: 328 TAYCMHCHGVDGRGFAPMLAPLAGNPNVLEKDASSLINVTLNGTEDLVIGGIPAPYPMPK 387 Query: 395 FREQLSDTEIAEVLSYVRSTWGNNGGAVDANAVGKLRGHTDPA 437 + L+D +IA+VL++VR+ W N AV A V KLR T A Sbjct: 388 YAPVLNDQQIADVLTFVRAGWNNGAPAVTAADVTKLRKSTQAA 430 Score = 39.3 bits (90), Expect = 2e-07 Identities = 35/128 (27%), Positives = 60/128 (46%), Gaps = 17/128 (13%) Query: 181 APTATYAAKPDQDALWNRGAYIVQGPGHCGSCHT-PRGLAFNEKALDEAGAPFLAGALLD 239 +P + A+ DQ AL RGAY+ + G C +CHT P+G F G P + Sbjct: 23 SPASAAASAADQ-ALVQRGAYLAKA-GDCAACHTAPKGKPF------AGGLPM--NTPMG 72 Query: 240 GWYAPSLRQDPNTGLGRWSEPQIVQFLKTG--RNAHAVVYGSMTEAFNNSTQFMQDDDLA 297 Y ++ D TG+G ++E + ++ G ++ H +Y +M S + D+D+ Sbjct: 73 QIYTTNITPDAQTGIGSYTEQDFARAMREGVAKDGHN-LYPAMPYP---SYAKVNDEDMK 128 Query: 298 AIARYLKS 305 A+ + S Sbjct: 129 ALYAFFMS 136 Lambda K H 0.318 0.133 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 33 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 447 Length of database: 431 Length adjustment: 32 Effective length of query: 415 Effective length of database: 399 Effective search space: 165585 Effective search space used: 165585 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory