Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3); L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) (characterized)
to candidate H281DRAFT_01833 H281DRAFT_01833 aldehyde dehydrogenase (NAD+)
Query= BRENDA::P49419 (539 letters) >FitnessBrowser__Burk376:H281DRAFT_01833 Length = 499 Score = 479 bits (1234), Expect = e-140 Identities = 243/478 (50%), Positives = 327/478 (68%), Gaps = 7/478 (1%) Query: 66 ITTYCPANNEPIARVRQASVADYEETVKKAREAWKIWADIPAPKRGEIVRQIGDALREKI 125 I + P N E I RV +VA+ + + A++A+ W ++PAP+RGE+VR +G+ LRE+ Sbjct: 21 IAVHSPINGELIGRVASRTVAEVDAALASAQKAYASWRNVPAPRRGELVRLLGNKLREQK 80 Query: 126 QVLGSLVSLEMGKILVEGVGEVQEYVDICDYAVGLSRMIGGPILPSERSGHALIEQWNPV 185 LGS+++LE GKIL EG+GEVQE +DICD+AVGLSR + G + SER GH + E W+P+ Sbjct: 81 HALGSIITLETGKILQEGLGEVQEMIDICDFAVGLSRQLYGLTIASERPGHRMAETWHPL 140 Query: 186 GLVGIITAFNFPVAVYGWNNAIAMICGNVCLWKGAPTTSLISVAVTKIIAKVLED-NKLP 244 G+ +I+AFNFP AV+ WN A+A++CGN +WK + T L ++AV KI+ L++ P Sbjct: 141 GVCTVISAFNFPAAVWSWNAALALVCGNAVVWKPSEKTPLTALAVDKILQDALKEFGDAP 200 Query: 245 GAICSLTCGGADIGTAMAKDERVNLLSFTGSTQVGKQVGLMVQERFGRSLLELGGNNAII 304 + S+ GG ++G + D R N++S TGST++G+ VG+ V RFGRS+LELGGNNA I Sbjct: 201 EGLTSVVNGGREVGAKLVADPRSNIVSATGSTEMGRAVGVEVARRFGRSILELGGNNAGI 260 Query: 305 AFEDADLSLVVPSALFAAVGTAGQRCTTARRLFIHESIHDEVVNRLKKAYAQIRVGNPWD 364 AD+ L + +F+AVGTAGQRCT+ RRLF+HES++D+ V RLK Y+++ +GNP + Sbjct: 261 VSGSADMELALRGIVFSAVGTAGQRCTSLRRLFVHESVYDKAVERLKALYSKVVIGNPLE 320 Query: 365 PNVLYGPLHTKQAVSMFLGAVEEAKKEGGTVVYGGKVMDRPGN----YVEPTIVTGLGHD 420 VL GPL +Q+ + A+E+AK EGG V+GG+ GN YV P IV + Sbjct: 321 QGVLMGPLIDEQSFNRMQAALEQAKSEGGK-VFGGERHAVAGNEKGFYVRPAIVE-MPSQ 378 Query: 421 ASIAHTETFAPILYVFKFKNEEEVFAWNNEVKQGLSSSIFTKDLGRIFRWLGPKGSDCGI 480 S+ ETFAPILYV K+ + ++ NN GLSS +FT DL R+L GSDCGI Sbjct: 379 TSVVLKETFAPILYVLKYSDFDDAIGGNNAAVHGLSSCVFTTDLREAERFLSASGSDCGI 438 Query: 481 VNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQYMRRSTCTINYSKDLPLAQGIKF 538 NVNI SGAEIGGAFGGEK TGGGRESGSD+WK YMRR+T T+NYS LPLAQGI F Sbjct: 439 ANVNIGPSGAEIGGAFGGEKETGGGRESGSDSWKAYMRRATNTVNYSSALPLAQGIDF 496 Lambda K H 0.318 0.136 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 852 Number of extensions: 43 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 499 Length adjustment: 35 Effective length of query: 504 Effective length of database: 464 Effective search space: 233856 Effective search space used: 233856 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory