Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate H281DRAFT_02712 H281DRAFT_02712 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__Burk376:H281DRAFT_02712 Length = 505 Score = 402 bits (1033), Expect = e-116 Identities = 231/512 (45%), Positives = 323/512 (63%), Gaps = 18/512 (3%) Query: 9 TKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPG 68 T P L +RNI +TFPGV+AL +V L AGEV AL GENGAGKSTLMKIL+G Y DPG Sbjct: 5 TGVPFLEMRNISRTFPGVKALDRVNLEIRAGEVLALAGENGAGKSTLMKILTGIYAPDPG 64 Query: 69 GECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRR-GLVARGDM 127 G ++GQ V + AR LGV +IYQEL++ NL+V ENI+L R + R GL+ R M Sbjct: 65 GTILVEGQEVALADSHHARTLGVNIIYQELAVVGNLTVGENIFLAREPRTRLGLIDRPRM 124 Query: 128 VRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETD 187 R LA + D PA V+ LS+ Q+Q++EIA+A+ ++ ++MDEPT LS HET Sbjct: 125 YREAREVLATIDMDIDPATRVSELSVGQQQMIEIAKALCARSKAIIMDEPTASLSHHETS 184 Query: 188 RLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMV 247 L ++++LR +A++YISHR+ EI ELADRVTVLRDG VGT A +++ LV++MV Sbjct: 185 VLLGIVKRLRERNIAVVYISHRLEEIFELADRVTVLRDGRTVGTAPIADMTRETLVRLMV 244 Query: 248 GRDLSGFYTKTHGQAVEREVM----LSVRDVADGR-RVKGCSFDLRAGEVLGLAGLVGAG 302 R+LS Y + A V+ LS++ V R++ SF L GEVLG+AGLVG+G Sbjct: 245 ARELSELYGEPQSHASRDPVLEVRALSLKPVRKAEPRIRDISFTLHRGEVLGIAGLVGSG 304 Query: 303 RTELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFL 362 RTE+ ++FG A T G V+I S P AI +GI ++TEDRK QGL L Sbjct: 305 RTEIMEMIFGMRACT-GSVKIEGKPVS-------IRNPHDAIRSGIGFVTEDRKAQGLIL 356 Query: 363 DQSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQK 422 +V EN +L R + + R + LGI+ + V LSGGNQQK Sbjct: 357 GMTVRENFSLTHLERYS-PFQFVQHARERESCRRFVRMLGIKTPGVEQKVVNLSGGNQQK 415 Query: 423 VMLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCD 482 +++++ + P+VLI+DEPTRG+D+GAK+E++ LI LA G+ +++ISS+L EV+ + D Sbjct: 416 IVIAKWVARSPKVLIVDEPTRGIDVGAKAEVHALIARLAAEGIGVIVISSDLLEVLAVSD 475 Query: 483 RVLVMREGTLAGEVRPAGSAAETQERIIALAT 514 R+L +REG ++GE+ A +QE+++ALAT Sbjct: 476 RILTVREGRISGEL---SRAQASQEKVMALAT 504 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 643 Number of extensions: 32 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 505 Length adjustment: 35 Effective length of query: 505 Effective length of database: 470 Effective search space: 237350 Effective search space used: 237350 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory