GapMind for catabolism of small carbon sources

 

Alignments for a candidate for HSERO_RS05250 in Paraburkholderia bryophila 376MFSha3.1

Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate H281DRAFT_00426 H281DRAFT_00426 monosaccharide ABC transporter ATP-binding protein, CUT2 family

Query= uniprot:D8J111
         (520 letters)



>FitnessBrowser__Burk376:H281DRAFT_00426
          Length = 503

 Score =  684 bits (1764), Expect = 0.0
 Identities = 349/501 (69%), Positives = 416/501 (83%), Gaps = 1/501 (0%)

Query: 21  PVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDIL 80
           P+I+++ + K FPGV AL + QF+L  GEVHALMGENGAGKSTLMKIL+GVY RDSG+IL
Sbjct: 3   PLISVKKLSKSFPGVRALHDVQFDLVEGEVHALMGENGAGKSTLMKILAGVYTRDSGEIL 62

Query: 81  LDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELNRQ 140
           L G+PVE+  PR AQA GIGIIHQEL LMNHL+ AQNIFIGREPR  +GLF+DED+LN +
Sbjct: 63  LGGQPVELQSPRDAQAAGIGIIHQELQLMNHLTVAQNIFIGREPRGRLGLFLDEDKLNAK 122

Query: 141 AAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELF 200
           A  I +RM +++DP   VG LTVA QQMVEIAKALSFDSRVLIMDEPT+ALN+AEIAELF
Sbjct: 123 AREILSRMHVNIDPRAMVGNLTVASQQMVEIAKALSFDSRVLIMDEPTSALNDAEIAELF 182

Query: 201 RIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVGRA 260
           RIIR+L+ +GVG+VYISHKMDEL+QIADRV+V+RDG+Y+ATV   +TS++ II MMVGR 
Sbjct: 183 RIIRELKQRGVGVVYISHKMDELKQIADRVTVLRDGEYVATVAAADTSVEAIIGMMVGRT 242

Query: 261 LDGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGEILGFAGLMGAGRTEVARAIF 320
           L          S+ ++ LEVR L+ G  +RDVSFTLRKGEILGFAGLMGAGRTEVARA+F
Sbjct: 243 LSDVAPAGRAASQGEIALEVRNLHAGPLVRDVSFTLRKGEILGFAGLMGAGRTEVARAVF 302

Query: 321 GADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSSMGRF 380
           GADP+E+GEI + G KA I++P+DAVAHGIGYLSEDRK FGLA GMDV++NI +S++  F
Sbjct: 303 GADPVESGEIFVKGAKASIRTPSDAVAHGIGYLSEDRKRFGLATGMDVESNIVMSNLRNF 362

Query: 381 TRVGFMDQRA-IREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDILFF 439
             + F  +RA +R  A  ++  LAI+TPS  QQ RLLSGGNQQKIVIAKWL RDCD+LFF
Sbjct: 363 LSLNFFLRRARMRRRASHFINLLAIRTPSAAQQVRLLSGGNQQKIVIAKWLERDCDVLFF 422

Query: 440 DEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRITGELAR 499
           DEPTRGIDVGAKSEIYKLL +LA++GKAIVMISSELPE+LRMS RV+VMCEGRITGEL  
Sbjct: 423 DEPTRGIDVGAKSEIYKLLRSLADEGKAIVMISSELPEILRMSDRVVVMCEGRITGELPA 482

Query: 500 ADATQEKIMQLATQRESAVAS 520
             ATQE+IM LATQR++  A+
Sbjct: 483 EQATQERIMHLATQRQTLKAA 503


Lambda     K      H
   0.320    0.135    0.372 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 779
Number of extensions: 21
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 520
Length of database: 503
Length adjustment: 35
Effective length of query: 485
Effective length of database: 468
Effective search space:   226980
Effective search space used:   226980
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory