Align 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate H281DRAFT_02333 H281DRAFT_02333 aldehyde dehydrogenase (NAD+)
Query= reanno::acidovorax_3H11:Ac3H11_612 (483 letters) >FitnessBrowser__Burk376:H281DRAFT_02333 Length = 482 Score = 576 bits (1485), Expect = e-169 Identities = 289/471 (61%), Positives = 353/471 (74%), Gaps = 5/471 (1%) Query: 11 RHLINGRWEIGTTTGISTNPSDTREVVAEYARADRNQTELAVRAAADALPTWSQSTPQRR 70 RH ING WE G TTG+S NPSD E V EY RAD QT+ A+ AA+ A W+ S+ QRR Sbjct: 15 RHYINGGWETGATTGVSLNPSDLDEPVGEYVRADVRQTDSAIEAASAAFREWALSSAQRR 74 Query: 71 ADVLDMIGSELLARKDELGALLAREEGKTLPEGVAEVARSGQIFKFFAGEALRIQGELLA 130 AD LD IGSE+LAR+DELG LLARE GKTLPE +AE R+GQ FK A +A R E LA Sbjct: 75 ADALDAIGSEMLARRDELGRLLAREVGKTLPEALAEATRAGQTFKLLAADAQRAYAEPLA 134 Query: 131 SVRQGVQVDVTREPVGVVGIIAPWNFPFAIPAWKIAPALAYGNTVVFKPAELVPACGWAL 190 S R GV++D+TREP+GVVGIIAPW+ P AI A KI ALA+GN VV+KPAE PAC AL Sbjct: 135 SARAGVEIDMTREPLGVVGIIAPWSAPLAIAAGKIGAALAHGNCVVYKPAESTPACAAAL 194 Query: 191 AEIISRSGLPAGAFNLIMGSGREVGQTLVDHPLVNALSFTGSVATGDRILRAASQRRAKV 250 A I+SR+GLPAG FNL+MGSGR+VG +V HPLV A+SF+GS TG R+L+AA+ R+A+V Sbjct: 195 ASIVSRAGLPAGVFNLVMGSGRQVGARIVAHPLVAAISFSGSAETGTRVLQAAAARQARV 254 Query: 251 QLEMGGKNPLIVLADADLDQAVDCALQGSYFSTGQRCTASSRLIVEAEVHDAFVARLRNR 310 QLEMGGKNP +VLADADLD AVD AL G+Y STGQR TA++RLIVE + + FV L+ + Sbjct: 255 QLEMGGKNPFVVLADADLDSAVDAALTGAYGSTGQRSTAAARLIVERSIFEPFVDALQTK 314 Query: 311 LASLKVGHALERGTEMGPVVDDNQLAQNLGYIDIAKSEGAEHVWGGERLERPTPGHYMSP 370 LA L V HAL+ G +MGPV + QL ++L Y++I K EGA+ + GG +LER T G++ P Sbjct: 315 LARLNVDHALKHGADMGPVANAAQLERDLDYVEIGKQEGAQLLHGGRQLERATRGYFFEP 374 Query: 371 ALFLARPEHRVAREEIFGPVACVLRADDYDHALALANDTPFGLCAGICTTSLKRAMHFKR 430 ALF+ PEHR+AREEIFGP+A VLRADDYDHAL LANDT +GLCAGICT SL RA HF+R Sbjct: 375 ALFVGEPEHRIAREEIFGPLAVVLRADDYDHALHLANDTAYGLCAGICTRSLSRARHFRR 434 Query: 431 HAAVGMTMVNLPTAGVDFHVPFGGRKESSYGAREQGRYAAEFYTTVKTGYM 481 H G+ +NLPT+ V+ H P GGRK S+YG+ + A F+T VKT Y+ Sbjct: 435 HVHSGLVTINLPTSAVEHHAPGGGRKASAYGSTD-----AAFWTAVKTAYV 480 Lambda K H 0.320 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 671 Number of extensions: 21 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 482 Length adjustment: 34 Effective length of query: 449 Effective length of database: 448 Effective search space: 201152 Effective search space used: 201152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory