Align Alpha-ketoglutaric semialdehyde dehydrogenase 2; alphaKGSA dehydrogenase 2; 2,5-dioxovalerate dehydrogenase 2; KGSADH-II; EC 1.2.1.26 (characterized)
to candidate H281DRAFT_05316 H281DRAFT_05316 NADP-dependent aldehyde dehydrogenase
Query= SwissProt::Q08IC0 (525 letters) >FitnessBrowser__Burk376:H281DRAFT_05316 Length = 535 Score = 655 bits (1690), Expect = 0.0 Identities = 333/522 (63%), Positives = 393/522 (75%) Query: 2 QLTGEMLIGAEAVAGSAGTLRAFDPSKGEPIDAPVFGVAAQADVERACELARDAFDAYRA 61 ++TGEMLIG ++V G+ L AF+P+ G I PVFG DV ACELA+ AFD YR Sbjct: 10 RITGEMLIGRQSVRGAEEALHAFNPATGADIAEPVFGSGTARDVGLACELAQKAFDPYRQ 69 Query: 62 QPLAARAAFLEAIADEIVALGDALIERAHAETGLPVARLQGERGRTVGQLRLFARVVRDG 121 PL+ RA FLE IAD I ALGDAL+ERA E+GLP ARL+GERGRT GQL+LFA+ VR G Sbjct: 70 LPLSVRAEFLERIADGITALGDALVERAQQESGLPKARLEGERGRTTGQLKLFAQFVRSG 129 Query: 122 RFLAASIDPAQPARTPLPRSDLRLQKVGLGPVVVFGASNFPLAFSVAGGDTASALAAGCP 181 ++L A++D P R PLPRSDLR+QK+ +GPV VFGASNFPLAFSVAGGDTA+ALAAGCP Sbjct: 130 QWLDATLDSPLPERKPLPRSDLRMQKIAIGPVAVFGASNFPLAFSVAGGDTAAALAAGCP 189 Query: 182 VIVKAHEAHLGTSELVGRAIRAAVAKTGMPAGVFSLLVGPGRVIGGALVSHPAVQAVGFT 241 V+VKAH AHLGTSE+VGR I+ + +P GVFSL+VG G +G ALV+HPA++AVGFT Sbjct: 190 VVVKAHRAHLGTSEMVGRVIQRVAQEMDLPEGVFSLIVGAGNSVGEALVAHPAIKAVGFT 249 Query: 242 GSRQGGMALVQIANARPQPIPVYAEMSSINPVVLFPAALAARGDAIATGFVDSLTLGVGQ 301 GSR GG+AL+++A ARP+PIPV+AEMSSINPV L P AL R + IA GFVDSL LG GQ Sbjct: 250 GSRAGGLALMRVAAARPEPIPVFAEMSSINPVFLLPNALTQRTENIARGFVDSLVLGAGQ 309 Query: 302 FCTNPGLVLAIDGPDLDRFETVAAQALAKKPAGVMLTQGIADAYRNGRGKLAELPGVREI 361 FCTNPGL +A+D L F VA++AL KPA MLT GI AY G KLA +PGV + Sbjct: 310 FCTNPGLAIAVDSDALKNFVAVASEALGGKPAQTMLTSGIHSAYTQGESKLAGIPGVETV 369 Query: 362 GAGEAAQTDCQAGGALYEVGAQAFLAEPAFSHEVFGPASLIVRCRDLDEVARVLEALEGQ 421 G QA AL+ A+ FLA PA EVFGPAS IVRC+D +E+ +V E GQ Sbjct: 370 ARGVDVTGPNQARAALFVTDAKTFLATPALEDEVFGPASTIVRCKDENELLQVAEHFAGQ 429 Query: 422 LTATLQMDADDKPLARRLLPVLERKAGRLLVNGYPTGVEVCDAMVHGGPFPATSNPAVTS 481 LTAT+QMD+ D P ARRL+P+LERKAGRLLVNGYPTGVEVC AMVHGGPFPATS+ TS Sbjct: 430 LTATIQMDSADVPAARRLVPILERKAGRLLVNGYPTGVEVCHAMVHGGPFPATSDSRATS 489 Query: 482 VGATAIERFLRPVCYQDFPDDLLPEGLQESNPLAIPRLRDGK 523 VG TAIERFLRPVCYQDFP DLLP+ L + NPL + R RDG+ Sbjct: 490 VGTTAIERFLRPVCYQDFPADLLPQALADDNPLDLWRRRDGE 531 Lambda K H 0.320 0.137 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 935 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 535 Length adjustment: 35 Effective length of query: 490 Effective length of database: 500 Effective search space: 245000 Effective search space used: 245000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory