Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate H281DRAFT_03540 H281DRAFT_03540 succinate semialdehyde dehydrogenase (EC 1.2.1.16)
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Burk376:H281DRAFT_03540 Length = 479 Score = 372 bits (955), Expect = e-107 Identities = 204/462 (44%), Positives = 273/462 (59%), Gaps = 2/462 (0%) Query: 13 IDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERAA 72 I GEW + AS T V+NPATG+ I +VA G + +A+AAA+ F AWR + A ER+A Sbjct: 11 IGGEWYEGAS--TYPVLNPATGEVIAQVAKGGAVEATQAIAAAERAFPAWRSLTAKERSA 68 Query: 73 TMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPPR 132 +++ L+ E DA+A L+T+EQGKPL EAR EV AA EWFA+E +R YG ++P Sbjct: 69 RVKRWGELMLEHRDALAALLTREQGKPLAEARGEVGYAASFFEWFAEEAKRAYGDVIPSP 128 Query: 133 NLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALLR 192 N A+ V +EPVG VAA TPWNFP+ + RK ALA GC+ ++K EETP S AL Sbjct: 129 NPNAKIIVTREPVGVVAAITPWNFPLAMITRKAGPALAAGCTMVLKPSEETPLSALALAV 188 Query: 193 AFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRATM 252 AG+P GV +V GD I L V+RK++FTGST VGK LA + +K+ ++ Sbjct: 189 LAEKAGIPPGVFNVVSGDAVAIGGALTESDVVRKLSFTGSTRVGKLLAKQSADTLKKLSL 248 Query: 253 ELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVKHAE 312 ELGG+AP IV +DAD+ AV+ A +KFRN GQ C+ RF V + I D FT AL + A Sbjct: 249 ELGGNAPFIVFDDADLDAAVQGAMASKFRNTGQTCVCVNRFYVQDGIYDAFTLALAQAAR 308 Query: 313 GLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTVIA 372 ++VGN L+ G L N LT + + + +A + GA + TG + G F+ PTV+ Sbjct: 309 KMRVGNALQGDVEQGPLINQAALTKVEAHVADALQKGAKVLTGAKPHALGGTFYEPTVLV 368 Query: 373 NVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQRLE 432 + + E FGPVAA F +EA+A AN PFGL+ Y +TR A + + LE Sbjct: 369 DASSSMLIAQEETFGPVAACFRFKTEDEAVAAANATPFGLSAYFYTRDLARAWRVGEALE 428 Query: 433 VGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTK 474 GM+ IN+ PFGGVK SG G EG L+ Y K Sbjct: 429 SGMVGINEGILSTEVAPFGGVKQSGLGREGSKYGLDEYTELK 470 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 608 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 479 Length adjustment: 34 Effective length of query: 447 Effective length of database: 445 Effective search space: 198915 Effective search space used: 198915 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory