Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate H281DRAFT_06226 H281DRAFT_06226 long-chain acyl-CoA synthetase
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__Burk376:H281DRAFT_06226 Length = 557 Score = 235 bits (600), Expect = 3e-66 Identities = 171/524 (32%), Positives = 252/524 (48%), Gaps = 22/524 (4%) Query: 51 VHQGRRYTYAQLQTEAHRLASALLGMGLTPGDRVGIWSHNNAEWVLMQLATAQVGLVLVN 110 V G+ +Y +L + +LA+ GL G RV I N ++ + A + G V+VN Sbjct: 43 VCMGKEISYGELDALSRKLAAWFQSKGLARGARVAIMMPNVLQYPVAIAAILRAGYVVVN 102 Query: 111 INPAYRTAEVEYALNKVGCKLLVSMARFKTSDYLGMLRELAPEWQGQQPGHLQAAKLPQL 170 +NP Y E+E+ L G + +V + F + + G L K + Sbjct: 103 VNPLYTPRELEHQLKDSGAEAIVLLENFAVTLQAVVRNTAVKHIVVAAMGDLMGVKGAVV 162 Query: 171 KTVVWIDDEAGQGADEPGLLRFTELIARGNAADPRLAQVAAGLQATDPIN-IQFTSGTTG 229 VV + PG ++F IA G + Q Q D + +Q+T GTTG Sbjct: 163 NFVVRQVKKMVPAWSLPGHVKFNTAIAEGERQTFKPVQ-----QGPDDVAFLQYTGGTTG 217 Query: 230 FPKGATLTHRNILNNGFFIGECMKLTPADRL-------CIPVPLYHCFGM-VLGNLACFT 281 KGATL HRN++ N + DR + +PLYH F + V G L T Sbjct: 218 VAKGATLLHRNLIANVLQSEIWLNPVRTDRTDIEQFITVVALPLYHVFALTVCGLLTIRT 277 Query: 282 HGATIVYPNDGFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPRFAEFNLSTLRTGIMAG 341 G ++ PN P +++ +Q T + V T++ A L++P F + + S L G Sbjct: 278 GGLGVLIPNPRDIP-GMIKALQGYAITTIPAVNTLYNALLNNPDFHKLDFSKLIAANGGG 336 Query: 342 SPCPTEVMKRVVEQMNLREITIAYGMTETSP-VSCQSSTDTPLSKRVSTVGQVQPHLEVK 400 V KR E + I YG++ETSP V+C T T S T+G P EV Sbjct: 337 MAVQEAVAKRWFENTHT-PIIEGYGLSETSPCVTCNPVTVTEYS---GTIGLPLPSTEVS 392 Query: 401 IVDPDTGAVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDEGGWMHTGDLATMDAEGYV 460 I D D G VP+GQ GE C +G VM GYW +T + + G+ +GD+ M+ +G+V Sbjct: 393 IRD-DEGNEVPLGQPGEICIRGPQVMAGYWNRPDETAKVMTSDGFFRSGDVGFMNEQGFV 451 Query: 461 NIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKYGEELCAWIIAKPGTQ 520 IV R KDM++ G N+YP EIE+ + R P V +V VGVPDQ GE + +++ K Sbjct: 452 KIVDRKKDMILVSGFNVYPNEIEDVVARLPGVFEVAAVGVPDQHSGEAVKLFVVRKDDAL 511 Query: 521 PTEDDIRAFCKGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKIRD 564 T+ DI A+CK Q+ YK P+ + F T P + GKI + ++RD Sbjct: 512 -TDADIFAYCKQQLTGYKRPKIVEFRTELPKSNVGKILRRELRD 554 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 732 Number of extensions: 44 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 557 Length adjustment: 36 Effective length of query: 542 Effective length of database: 521 Effective search space: 282382 Effective search space used: 282382 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory