GapMind for catabolism of small carbon sources

 

Alignments for a candidate for ilvE in Paraburkholderia bryophila 376MFSha3.1

Align aromatic-amino-acid transaminase TyrB; EC 2.6.1.57 (characterized)
to candidate H281DRAFT_04974 H281DRAFT_04974 aromatic-amino-acid transaminase

Query= CharProtDB::CH_004054
         (397 letters)



>FitnessBrowser__Burk376:H281DRAFT_04974
          Length = 399

 Score =  419 bits (1076), Expect = e-122
 Identities = 216/399 (54%), Positives = 278/399 (69%), Gaps = 5/399 (1%)

Query: 1   MFQKVDAYAGDPILTLMERFKEDPRSDKVNLSIGLYYNEDGIIPQLQAVAEAE-ARLNAQ 59
           +F  V+    DPIL L E F  D R  KVNL +G+Y+NE+G IP L+AV +AE AR+ A 
Sbjct: 3   LFSAVELAPRDPILGLNEAFNADTRPTKVNLGVGVYFNEEGKIPLLRAVRDAEKARVEAA 62

Query: 60  -PHGASLYLPMEGLNCYRHAIAPLLFGADHPVLKQQRVATIQTLGGSGALKVGADFLKRY 118
            P G   YLP+EG+  Y  A+  LL G D P++   RV T Q LGG+GALK+GADFLKR 
Sbjct: 63  LPRG---YLPIEGIAAYDAAVQKLLLGNDSPLIAAGRVVTAQALGGTGALKIGADFLKRL 119

Query: 119 FPESGVWVSDPTWENHVAIFAGAGFEVSTYPWYDEATNGVRFNDLLATLKTLPARSIVLL 178
            P + V +SDP+WENH A+F  AGFEV +YP+YD  T+GV F+ +L+ L +  A ++V+L
Sbjct: 120 NPSAKVAISDPSWENHRALFEAAGFEVVSYPYYDAHTHGVNFDGMLSALNSYAAGTVVVL 179

Query: 179 HPCCHNPTGADLTNDQWDAVIEILKARELIPFLDIAYQGFGAGMEEDAYAIRAIASAGLP 238
           H CCHNPTG DLT DQW  ++E++KAR L+PFLDIAYQGFG  +E DA A+R  A++ L 
Sbjct: 180 HACCHNPTGVDLTVDQWKQIVEVVKARNLVPFLDIAYQGFGDNIEADAAAVRLFAASELN 239

Query: 239 ALVSNSFSKIFSLYGERVGGLSVMCEDAEAAGRVLGQLKATVRRNYSSPPNFGAQVVAAV 298
             VS+SFSK FSLYGER+G LS++    E A RVL QLK  +R NYS+PP  G  VVAAV
Sbjct: 240 VFVSSSFSKSFSLYGERIGALSIITGSKEEATRVLSQLKRVIRTNYSNPPTHGGSVVAAV 299

Query: 299 LNDEALKASWLAEVEEMRTRILAMRQELVKVLSTEMPERNFDYLLNQRGMFSYTGLSAAQ 358
           L    L+A+W  E+  MR RI AMR  LV+ L     +R+F ++  QRGMFSY+GL+A Q
Sbjct: 300 LASPELRATWETELAGMRDRIRAMRNGLVERLKASGVDRDFSFVNAQRGMFSYSGLTAPQ 359

Query: 359 VDRLREEFGVYLIASGRMCVAGLNTANVQRVAKAFAAVM 397
           VDRLREEFG+Y +++GR+CVA LNT N+  VA A A V+
Sbjct: 360 VDRLREEFGIYAVSTGRICVAALNTRNLDVVANAIAHVL 398


Lambda     K      H
   0.320    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 435
Number of extensions: 18
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 399
Length adjustment: 31
Effective length of query: 366
Effective length of database: 368
Effective search space:   134688
Effective search space used:   134688
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory