Align Putative acyl-CoA dehydrogenase AidB; EC 1.3.99.- (characterized)
to candidate H281DRAFT_05793 H281DRAFT_05793 putative acyl-CoA dehydrogenase
Query= SwissProt::P33224 (541 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_05793 H281DRAFT_05793 putative acyl-CoA dehydrogenase Length = 561 Score = 459 bits (1182), Expect = e-134 Identities = 255/531 (48%), Positives = 324/531 (61%), Gaps = 16/531 (3%) Query: 4 QTHTVFNQPIPLNNSNLYLSDGALCEAVTREGAGWDSDFLASIGQQLGTAESLELGRLAN 63 QTH V NQ PL + NL+ SD AL A+ R+GA W D L G L T E+L L LAN Sbjct: 8 QTHEVTNQVPPLADYNLFSSDAALSAALERDGAAWHRDALLRHGAALTTPETLALAELAN 67 Query: 64 VNPPELLRYDAQGRRLDDVRFHPAWHLLMQALCTNRVHNLAWEEDARSGAFVARAARFML 123 + PEL + G R+D + FHPAWH L+ L +H L + D + GA AR A + L Sbjct: 68 RHTPELSTHSPTGERIDALEFHPAWHELLSLLRRKGLHALPFS-DPQPGAMAARCAGYFL 126 Query: 124 HAQVEAGSLCPITMTFAATPLLLQMLPAPFQDWTTPLLSDRYDSHLLPGGQKRGLLIGMG 183 HAQ+E+GSLCP+TMTFA+ P+L Q P F+ L + D LP QK +IGMG Sbjct: 127 HAQIESGSLCPLTMTFASIPVL-QREPQLFETLRDKLYAREQDPRDLPLTQKISAMIGMG 185 Query: 184 MTEKQGGSDVMSNTTRAERL----EDGSYRLVGHKWFFSVPQSDAHLVLAQTA--GGLSC 237 MTEKQGGSDV SN T+A + G+Y LVGHKWFFS PQ DAHLVLA+T GLSC Sbjct: 186 MTEKQGGSDVRSNQTQARAIAAGGRGGAYELVGHKWFFSAPQCDAHLVLARTHDHAGLSC 245 Query: 238 FFVPRFLPDGQRNAIRLERLKDKLGNRSNASCEVEFQDAIGWLLGLEGEGIRLILKMGGM 297 FFVPRF PDG +NA++++RLKDKLGNRSNAS EVEF DA G ++G EG G+ I++M Sbjct: 246 FFVPRFAPDGSKNAVQIQRLKDKLGNRSNASSEVEFLDAFGIMIGDEGRGVPTIIEMANY 305 Query: 298 TRFDCALGSHAMMRRAFSLAIYHAHQRHVFGNPLIQQPLMRHVLSRMALQLEGQTALLFR 357 TR DC +GS A+MR A AI+HA R FG L+ QPLMR+VL+ ++L+ E T L R Sbjct: 306 TRLDCVIGSAALMRAALVQAIHHARHRSAFGRNLVDQPLMRNVLADLSLESEAATVLFMR 365 Query: 358 LARAWDRRADA-----KEALWARLFTPAAKFVICKRGMPFVAEAMEVLGGIGYCEESELP 412 LA A+++ DA E W R+ TPAAK+ ICKR + F EAMEV GG GY E + Sbjct: 366 LAHAFEQSVDADSATSAERAWRRIVTPAAKYWICKRTLEFTGEAMEVWGGNGYVETGPMA 425 Query: 413 RLYREMPVNSIWEGSGNIMCLDVLRVLNKQAGVYDLLSEAFVEVKGQDRYFDRAVRRLQQ 472 R YRE PVNSIWEGSGN+MCLDVLR + ++ L + A+ +L Sbjct: 426 RFYREAPVNSIWEGSGNVMCLDVLRAMEREPEAAQALFAQWQADAAAHAALSAALGKLAA 485 Query: 473 QLRKPAEE---LGREITHQLFLLGCGAQMLKYASPPMAQAWCQVMLDTRGG 520 L PAE+ R I Q+ L+ ++K+A +A+A+ L + G Sbjct: 486 TLNGPAEDREASARRIAQQIVLIAQATLLIKHAPAAVAEAFIATRLGSGCG 536 Lambda K H 0.324 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 685 Number of extensions: 25 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 541 Length of database: 561 Length adjustment: 36 Effective length of query: 505 Effective length of database: 525 Effective search space: 265125 Effective search space used: 265125 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory