Align Putative aldehyde dehydrogenase transmembrane protein; EC 1.2.1.3 (characterized, see rationale)
to candidate H281DRAFT_01833 H281DRAFT_01833 aldehyde dehydrogenase (NAD+)
Query= uniprot:Q92L07 (510 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_01833 H281DRAFT_01833 aldehyde dehydrogenase (NAD+) Length = 499 Score = 659 bits (1700), Expect = 0.0 Identities = 329/498 (66%), Positives = 395/498 (79%), Gaps = 2/498 (0%) Query: 13 EAAALLDKMGVAKDLYTGGDMPSFSPVTGEKIASLKTVSAAEAAGKIEKADEAFRAWRLV 72 +A+A+L ++G++ L GD+ SP+ GE I + + + AE + A +A+ +WR V Sbjct: 2 KASAILSELGISH-LAEAGDIAVHSPINGELIGRVASRTVAEVDAALASAQKAYASWRNV 60 Query: 73 PAPKRGELVRLLGEELRAFKADLGRLVSIEAGKIPSEGLGEVQEMIDICDFAVGLSRQLY 132 PAP+RGELVRLLG +LR K LG ++++E GKI EGLGEVQEMIDICDFAVGLSRQLY Sbjct: 61 PAPRRGELVRLLGNKLREQKHALGSIITLETGKILQEGLGEVQEMIDICDFAVGLSRQLY 120 Query: 133 GLTIATERPGHRMMETWHPLGVVGIISAFNFPVAVWSWNAALALVCGDAVVWKPSEKTPL 192 GLTIA+ERPGHRM ETWHPLGV +ISAFNFP AVWSWNAALALVCG+AVVWKPSEKTPL Sbjct: 121 GLTIASERPGHRMAETWHPLGVCTVISAFNFPAAVWSWNAALALVCGNAVVWKPSEKTPL 180 Query: 193 TALACQAILERAIARFGDAPEGLSQVLIGDRAIGEVLVDHPKVPLVSATGSTRMGREVGP 252 TALA IL+ A+ FGDAPEGL+ V+ G R +G LV P+ +VSATGST MGR VG Sbjct: 181 TALAVDKILQDALKEFGDAPEGLTSVVNGGREVGAKLVADPRSNIVSATGSTEMGRAVGV 240 Query: 253 RLAKRFARAILELGGNNAGIVCPSADLDMALRAIAFGAMGTAGQRCTTLRRLFVHESVYD 312 +A+RF R+ILELGGNNAGIV SAD+++ALR I F A+GTAGQRCT+LRRLFVHESVYD Sbjct: 241 EVARRFGRSILELGGNNAGIVSGSADMELALRGIVFSAVGTAGQRCTSLRRLFVHESVYD 300 Query: 313 QLVPRLKKAYQSVSVGNPLESAALVGPLVDKAAFDGMQKAIAEAKNHGGAVTGGER-VEL 371 + V RLK Y V +GNPLE L+GPL+D+ +F+ MQ A+ +AK+ GG V GGER Sbjct: 301 KAVERLKALYSKVVIGNPLEQGVLMGPLIDEQSFNRMQAALEQAKSEGGKVFGGERHAVA 360 Query: 372 GHENGYYVKPALVEMPKQEGPVLEETFAPILYVMKYSDFDAVLAEHNAVAAGLSSSIFTR 431 G+E G+YV+PA+VEMP Q VL+ETFAPILYV+KYSDFD + +NA GLSS +FT Sbjct: 361 GNEKGFYVRPAIVEMPSQTSVVLKETFAPILYVLKYSDFDDAIGGNNAAVHGLSSCVFTT 420 Query: 432 DMQESERFLAADGSDCGIANVNIGTSGAEIGGAFGGEKETGGGRESGSDAWKAYMRRATN 491 D++E+ERFL+A GSDCGIANVNIG SGAEIGGAFGGEKETGGGRESGSD+WKAYMRRATN Sbjct: 421 DLREAERFLSASGSDCGIANVNIGPSGAEIGGAFGGEKETGGGRESGSDSWKAYMRRATN 480 Query: 492 TVNYSKALPLAQGVSFDI 509 TVNYS ALPLAQG+ F+I Sbjct: 481 TVNYSSALPLAQGIDFNI 498 Lambda K H 0.317 0.134 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 778 Number of extensions: 33 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 499 Length adjustment: 34 Effective length of query: 476 Effective length of database: 465 Effective search space: 221340 Effective search space used: 221340 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory