Align Alpha-glucosidase (EC 3.2.1.20) (characterized)
to candidate H281DRAFT_06049 H281DRAFT_06049 trehalose synthase
Query= reanno::psRCH2:GFF856 (542 letters) >FitnessBrowser__Burk376:H281DRAFT_06049 Length = 1153 Score = 250 bits (639), Expect = 2e-70 Identities = 179/546 (32%), Positives = 264/546 (48%), Gaps = 97/546 (17%) Query: 8 WWRGGVIYQVYPRSFFDSNGDGVGDLPGVLHKLDYIASLNVDAIWLSPFFTSPMKDFGYD 67 W++ +IYQV+ +SFFD+N DGVGD PG++ KLDYIA L V+AIWL PF+ SP +D GYD Sbjct: 42 WYKDAIIYQVHIKSFFDANNDGVGDFPGLIAKLDYIAELGVNAIWLLPFYPSPRRDDGYD 101 Query: 68 VADYRGVDPLFGTLDDFVRLVEACHERGMRVLIDQVLNHSSDQHPWFAESRSSR-DNDKA 126 +ADYR V P +G L D R ++ H RG+RV+ + V+NH+SDQHPWF +R ++ ++ Sbjct: 102 IADYRNVHPDYGQLSDVKRFIQEAHARGIRVITELVINHTSDQHPWFQRARRAKPGSNHR 161 Query: 127 DWYVWADPKPDGTVPNNWLSVFGGPA-WSWDSRRRQYYLHNFLSSQPDLNFHCPAVQDQL 185 ++YVW+D + + P+ W+ D YY H F S QPDLNF PAV ++ Sbjct: 162 NFYVWSD-TDQKYQETRIIFIDSEPSNWTHDPVAGAYYWHRFYSHQPDLNFDNPAVLREV 220 Query: 186 LDDMEFWLKLGVDGFRLDAANFYFHDAELRDNPPNTEIREGSIGVRIDNPYAYQRH-IYD 244 L M FWL +G+DG RLDA PY +R + Sbjct: 221 LQIMRFWLDMGIDGLRLDAV-----------------------------PYLVEREGTNN 251 Query: 245 KTRPENMDFLRRLRALLQ-RYPGASSVAEIGCDESLRTMAAYTSGGDTLHMAYSFDLLTE 303 + PE L+++RA + YP +AE ++ + Y D HMA+ F L+ Sbjct: 252 ENLPETHAILKKIRATIDAEYPNRMLLAE--ANQWPEDVKEYFGDEDECHMAFHFPLMPR 309 Query: 304 --QCSPGYIRHTVEGIERELAD-----GWSCWSMGNHDVVR------------------- 337 R + I R+ D W+ + + NHD + Sbjct: 310 IYMSIASEDRFPITDIMRQTPDLAETNQWAIF-LRNHDELTLEMVTDSERDYLWNTYASD 368 Query: 338 --------VMTRWALNGRPDPERGRLLMALLLSLRGSVCMYQGEELGLPEAELRYEDLVD 389 + R A D R L+ +LLLS+ G+ +Y G+ELG+ + + D Sbjct: 369 RRARLNLGIRRRLAPLMERDRRRIELINSLLLSMPGTPVIYYGDELGMGD-NIHLGD--- 424 Query: 390 PYGITFWPEFKGRDGCRTPMPWESEAHHAGFTGSQP----WLPVDDS---HRSLSVAAQD 442 RDG RTPM W S+ + GF+ + P PV S +++V AQ Sbjct: 425 ------------RDGVRTPMQWSSD-RNGGFSRADPEQLVLPPVMGSLYGFDAVNVEAQS 471 Query: 443 ADPHSMLNCYRRFLGWRREQRLLIEGDIHMVYHDD-ALLVFERRLGDE-AWLCLFNLGDL 500 DPHS+LN RR L RR ++ G I + ++ +L + R + +E LC+ NL Sbjct: 472 RDPHSLLNWTRRMLATRRAKQTFGRGTIRFLKPENRKILAYLREMPNEPPILCVANLSRA 531 Query: 501 SRSYEL 506 ++ EL Sbjct: 532 PQAVEL 537 Lambda K H 0.322 0.140 0.464 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1724 Number of extensions: 95 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 542 Length of database: 1153 Length adjustment: 41 Effective length of query: 501 Effective length of database: 1112 Effective search space: 557112 Effective search space used: 557112 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory