Align Inositol transport system ATP-binding protein (characterized)
to candidate H281DRAFT_00426 H281DRAFT_00426 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__Burk376:H281DRAFT_00426 Length = 503 Score = 175 bits (444), Expect = 1e-48 Identities = 96/241 (39%), Positives = 143/241 (59%), Gaps = 3/241 (1%) Query: 6 PLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDIL 65 PLI ++ + K F V AL V D+ GE H L+G+NGAGKST +K ++GV+ G+IL Sbjct: 3 PLISVKKLSKSFPGVRALHDVQFDLVEGEVHALMGENGAGKSTLMKILAGVYTRDSGEIL 62 Query: 66 FEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYAN 125 GQP+ PRDA AAGI +HQ L ++ ++V++N F+G EP ++G D D N Sbjct: 63 LGGQPVELQSPRDAQAAGIGIIHQELQLMNHLTVAQNIFIGREPRGRLG--LFLDEDKLN 120 Query: 126 RITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTA 185 E + +M +N+ P VG L+ +Q V IA+A+ F ++VLI+DEPTSAL + A Sbjct: 121 AKAREILSRMHVNI-DPRAMVGNLTVASQQMVEIAKALSFDSRVLIMDEPTSALNDAEIA 179 Query: 186 NVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMA 245 + I +++++GV VV+I+H + + DR TVL G+ + T D S E + MM Sbjct: 180 ELFRIIRELKQRGVGVVYISHKMDELKQIADRVTVLRDGEYVATVAAADTSVEAIIGMMV 239 Query: 246 G 246 G Sbjct: 240 G 240 Score = 72.8 bits (177), Expect = 1e-17 Identities = 68/255 (26%), Positives = 102/255 (40%), Gaps = 16/255 (6%) Query: 4 SQPLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGD 63 SQ I ++ H G ++ VS + GE G GAG++ + + G G+ Sbjct: 254 SQGEIALEVRNLHAGPLVR--DVSFTLRKGEILGFAGLMGAGRTEVARAVFGADPVESGE 311 Query: 64 ILFEGQPLHFADPRDAIAAGIATVHQHLAMIPL---MSVSRNFFMGNEPIRKIGPLKLFD 120 I +G P DA+A GI + + L M V N M N +R L F Sbjct: 312 IFVKGAKASIRTPSDAVAHGIGYLSEDRKRFGLATGMDVESNIVMSN--LRNFLSLNFF- 368 Query: 121 HDYANRITMEEMRKMGINL---RGPD--QAVGTLSGGERQTVAIARAVHFGAKVLILDEP 175 R M INL R P Q V LSGG +Q + IA+ + VL DEP Sbjct: 369 ---LRRARMRRRASHFINLLAIRTPSAAQQVRLLSGGNQQKIVIAKWLERDCDVLFFDEP 425 Query: 176 TSALGVRQTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDI 235 T + V + + + + +G A+V I+ + L + DR V+ G+ G Sbjct: 426 TRGIDVGAKSEIYKLLRSLADEGKAIVMISSELPEILRMSDRVVVMCEGRITGELPAEQA 485 Query: 236 SAEELQDMMAGGQEL 250 + E + + Q L Sbjct: 486 TQERIMHLATQRQTL 500 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 307 Number of extensions: 13 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 503 Length adjustment: 29 Effective length of query: 232 Effective length of database: 474 Effective search space: 109968 Effective search space used: 109968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory